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43.1. General information 

43.1.1. Types of 3-phase systems 
 
 The system of 3 voltages (currents, power) of the same frequency and 
shifted in the phase by the same angle is called 3-phse system. 
If the amplitudes of these voltages (currents, power) are equal and the phase shift 
is 2π/3 (120) the 3-phase system is called symmetrical. 
 The 3-phase voltage is produced in a generator (alternator), having 3 
identical windings, called phase winding, geometrically shifted by an angle of 
120, rotating with constant speed in the magnetic field. The phases are 
traditionally indicated by letters: A, B, C;  R, S, T or U, V, W. According to the 
latest Polish standards, the phases labels L1, L2, L3should be used . 

 
 

Figure 43. Phasor diagram and waveforms for 3-phase system 
 
 Each winding of the generator can be presented in the form of an ideal 
source of sine wave voltage, therefore the equivalent scheme of the generator 
presents three voltage sources with the source voltages u

A
, u

B
, u

C..If we assume 

that phase B voltage is delayed with relative to phase A by 120 and phase C 
voltage relative to phase B also by 120, which is delayed against phase A by 
240, the instantaneous values of the generator voltages are given by formulas: 
 
                                      u

A
 = U

m sin(t + u) 

   u
B
 = U

m sin(t + u - 120)                             (43.1) 

   u
C
 = U

m sin(t + u - 240) 
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(assuming that the amplitude of the voltage Um, the pulsations ω, and the voltages 
phases u are the same in all phase windings). 
 
The complex values1 of the above voltages are then: 

                                                 U
A = U  

                                                 U
B = U e j u

o( ) 120
                            (43.2) 

                                                 U
C = U e j u

o( ) 240
     

 where: 
√

 - the rms value of these voltages. This 3-phase voltage system 

with phase sequence: A, B, C is called a positive sequence. 
 
   

 
 
 Figure 43. Phasor diagram of the positive sequence of 3-phase voltages system 
 
 If phase B voltage leads phase A voltage by 120, while phase C voltage 
leads phase B voltage by 120, so leads of phase A voltage by 240,then this 
system is called a negative sequence. 

 
 

                                                 
1  See supplement at the end of chapter. 

e j u

UA

UBUC
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Figure 43. Phasor diagram of the negative sequence of 3-phase voltages system 
 
 The 3-phase generator is called symmetrical when the voltages on the 
winding terminals have the same rms values, and the offset between the voltages 
of the two successive phases is 120. The symmetrical generator voltages form a 
positive or negative sequence system. 
The wide application of 3-phase systems in the electricity industry results from 
their advantages, such as: 

 reduction of material consumption on the wires when supplying the 
specified power to the receiver, 

 increased by the 3  voltage (line voltage), resulting in the receiver being 
able to operate at a lower current value, 

 less power loss in the wires at a given voltage and transmission power (as 
a result of a reduction of current value), 

 production of a rotating magnetic field used in 3-phase motors, 
compared to equivalent single-phase systems. Due to the above advantages, the 
cost of energy transmission in 3-phase systems is considerably lower than for 
single phase systems. 

 

43.1.2 Determination of the phase sequence for supply grid 

Determining the sequence of phases of the voltage supplied to the 3-phase 
receiver have an important role only when the receiver's work depends on that 
sequence. A typical example of such receivers are the devices where there is a 
rotating magnetic field - asynchronous motors. Changing the sequence of phases 
changes the direction of the motor rotation to the opposite, which may damage the 
machine. 

To determine the sequence of phases are used instruments, called phase sequence 
indicators. There are 3 basic types of these devices: electromechanical, electronic 
and equivalent-electric. 

UA

UCUB
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The main element of the electromechanical indicator is a miniature 3-phase 
asynchronous motor, mechanically coupled with a rotating disk. After connecting 
the testing grid to the respective indicator terminals, the motor starts rotating, 
together with mechanical connected disk. Right (i.e. clockwise) the direction of 
rotation of the disk indicates the positive sequence of (according to terminal 
markings) phases, while the left - of the negative sequence. 

The electronic indicator, built on semiconductor elements, is characterized by 
small dimensions and simplicity operation (compared to electromechanical). It 
usually has 5 LEDs that indicate the status of the tested grid. The green LED light 
indicates the positive sequence and the red LED - the negative sequence. The 
illumination of 3 yellow LEDs indicates the presence of phase voltages. 
 In the absence of the above indicators, you can build a simple equivalent 
electrical indicator, which contains two bulbs and a one capacitor (or inductive 
coil), as shown in Figure 43.5. 
 
 

 
Figure 43. Connection circuit scheme used to determine the sequence of grid phases 

 
 
Presented condition should be fulfilled for the proper functioning of the circuit: 

R1 = R2 = 1/C 

or:    R1 = R2 = L                                            (43.3) 

 
where: R1, R2 - resistance of light bulbs (in the light state), C - capacitor 

capacitance, L -inductance of the coil, ω - pulsation of the grid  (314 rad/sec). 
 The capacitor attached to one of the grid phase, which is considered the 
first (A). After the system has been switched on, due to the capacitance character 
of phase with capacitor, an asymmetric phase voltage system occurs. The rms 
voltage value of second phase will be higher than the third phase voltage, which 
will be signalize by light the bulbs. Thus, brightest light bulb is connected to the 
second phase (B), and the darkest bulb - to the third phase (C). 



 
Tests of 3-phase systems 

 If, instead of the capacitor, you apply an inductor connected to the first 
phase (A), the bulb light is brightest in the third phase (C) and the darkest in the 
second phase (B). 
 Instead of light bulbs, you can use resistors that meet the above 
dependence and measure the voltages on them. 
 

43.1.3 Connection of 3-phase circuits 

 
 In practice, symmetrical 3-phase circuits are most common and are 
powered by symmetrical voltage sources. These circuits are connected 
(associated) in two basic ways: star  , and delta .  
 

43.1.3.1 Star connection  
 

 
Figure 43.6. Four-wire 3-phase star system 

 
 The windings of the 3-phase generator (receiver) are connected to the star 
when the beginnings of all the windings (output terminals) are connected to each 
other, and the ends (input terminals) are led outside of the device. The common 
point of the generator winding is called the generator's neutral point, and the 
common point of the receiver terminals is the receiver's neutral point. The wire 
that connects the generator and receiver's neutral points is called a neutral wire 
(formerly known as zero wire). 
The star connection is presented in the Fig. 43.6. 
Voltages u'A,, u'B, u'C on receiver phases, or voltages uA,, uB, uC  on the generator 

phases are called the phase voltages. However, the voltages uAB , uBC , uCA 

between the terminals of the generator, or the voltages u'AB , u'BC , u'CA between 

the receiver terminals are called the line voltages 
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 The currents in the generator or receiver phases are called the phase 
currents, and the currents in the wires connecting the terminals A, B, C of the 
generator with clamps A ', B ', C ' of the receiver are called line currents. 
 Based on Figure 43.6, we can write for instantaneous voltages and 
complex values, respectively 
 
        u

AB
 = u

A
 – u

B
            u

BC
 = u

B
 – u

C
          u

CA
 = u

C
 – u

A
  

      (43.4) 
      UAB

 = U
A
 – U

B
   U

BC
 = U

B
 – U

C          UCA
= U

C
 – U

A                              
 
and similarly: 
  
        u’

AB
 = u’

A
 – u’

B
             u’

BC
 = u’

B
 – u’

C
           u’

CA
 = u’

C
 – u’

A 
 (43.5) 

      U’
AB

 = U’
A
 – U’

B
        U’

BC
 = U’

B
 – U’

C             U’
CA

= U’
C
 – U’

A                              

 
It is easy to verify that the sum of the complex values of line voltages is always 
equal to zero: 

  U
AB

 + U
BC

 + U
CA

 = 0 .                        (43.6) 

 
The complex value of the current in the neutral wire is: 
 

            I
N
 = I

A
 + I

B
 + I

C  .                  (43.7) 
 
If in the circuit presented in Fig. 43.6 there is no neutral wire, it is such a system 
we call the three-wire system. In a three-wire system, the sum of the complex 
values of phase currents is equal to zero: 
 
                       I

A
 + I

B
 + I

C
 = 0  .                              (43.8) 

 
A graphical symbol of a star connection is       or the letter Y. 
 

43.1.3.2 Delta connection  
  
The windings of the generator (receiver terminals) are connected in a delta when 
the ends of one winding (output terminal of one phase of the receiver) is connected 
to the beginning of the next winding (the input terminal of the next phase of the 
receiver), wherein the output terminals of the generator (input receiver) are the 
common points of the winding pairs (receiver phases). The delta connection of the 
generator and receiver shows the Fig. 43.7. 
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Figure 43.7. 3-phase system with generator and receiver connected in delta 

 
In this system, the values of the line currents, depending on the generator's phase 
currents or the receiver, and are: 
 

I
A
 = I

BA
 – I

AC 
I

B
 = I

CB
 – I

BA     (43.9) 
   I

C
= I

AC
 – I

CB      
 
 

      I
A
 = I'

AB
 – I'

CA 

    IB
 = I'

BC
 – I'

AB     (43.10) 
      I

C
 = I'

CA
 – I'

BC
 

 
The sum of the complex values of the line currents is always zero: 
 

        I
A
 + I

B
 + I

C
 = 0 .    (43.11)       

The graphical symbol of the delta connection is or the letter D. 
   
 
 Currents and voltages in the system outside the generator do not change 
when the generator with delta connection is replaced by a star connection, 
provided that the line voltages remain the same. 
Therefore, in order to simplify calculations, it is assumed that the generators 
powering 3-phase circuits are connected to the star. 
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43.1.4.  The relationship between voltages and currents in 3-phase 
systems 

 
 Consider the system connected to the star, as in Fig. 43.6. Assuming a 
positive sequence of voltages and load symmetry, the phasor diagram of such a 
system is as follows: 
                                                    

 
 

Figure 43.8. The phasor diagram of the symmetrical receiver connected to the star 
 

 
From the rectangular triangle AND we find that: 
 

  DA = NA cos 30  .                            (43.12) 
because: 
 

           |U'
AB

 | = U'
AB

 = 2 DA,    cos 30 = 
3

2
,              (43.13) 

 
we get: 

 U'
AB  = 3  U'

A      .  (43.14) 

 
 Because in the symmetrical system, the rms phase voltage values are the 
same, and the rms line voltage values are also the same, we can write in general: 
 

U = U 3
F
 

(43.15) 
I = I

f 
 . 

 
This means that, if U

f
 = 230 V, then  U = 400 V. 
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Now consider the symmetrical receiver connected to the delta as 
presented in Fig. 43.6. Its phasor diagram was presented in Fig. 43.9. 
 

 
Figure 43.9. The phasor diagram of the symmetrical receiver connected to the delta 

 
On the basis of the above figures we can conclude that the line currents are equal 
to the difference of the corresponding phase currents: 
 

I
A
 = I'

AB
 – I'

CA 

             IB
 = I'

BC
 – I'

AB    (43.16) 

I
C
= I'

CA
 – I'

BC 

 
and generally relationship between phase voltages, currents and line voltages, 
currents are as follows: 
 

I = and 3
f
 

(43.17) 

U = U
F
 

 
43.1.5 Unsymmetrical 3-phase systems  

 
 In practice, in addition to discussed above the symmetrical circuits, there 
are also unsymmetrical systems, both connected to the star and delta. During 
analyzing such systems, we assume that the power generator is symmetrical and 
connected to the star, while the unsymmetrical state occurs on the receiver side, 
due to different impedance of the individual phases, or emergency situations in 
the supply grid - short circuits or interruptions. 
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43.1.5.1. Calculation of 3-phase systems. 
The method for calculating 3-phase systems is as follows: 

 if the receiver is connected to the delta, replace it with an equivalent star, 
 calculate the voltage U

N
 between the neutral points N and N ' (star points) 

of the generator and receiver (see Fig. 43.10), 
 
 

 
Figure 43.10. Four-wire 3-phase system 

 
Based on the Kirchhoff’s laws, it can be demonstrated that: 
 

  A B CA B C
N

N A B C

Y U +Y U +Y U
U =

Y +Y +Y +Y
  (43.18) 

where: 
 Y

A
, Y

B
, Y

C
  - complex admittances of the receiver phases 

 Y
N
 – complex admittance of the neutral wire. 

 
In the absence of a neutral wire (three-wire system) YN = 0. 

Likewise, in the event of a break in the phase, its admittance is equal to zero. 
 

 based on the calculated voltage UN, using the Kirchhoff’s laws, we 

calculate the flow of currents and the distribution of voltages in the 
analyzed system. 

 The phase currents of the receiver connected to the star are expressed in 
the following formulas: 
 

A N
A

A

U -U
I =

Z
             B N

B
B

U -U
I =

Z
              C N

C
C

U -U
I =

Z
.        (43.19) 
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Figure 43.11. Phasor diagram of four-wire unsymmetrical system 
 
 

43.1.5.2. Break in one of the power wires 

A special, unsymmetrical case is the break in one of the wires supplying 
a symmetrical 3-phase receiver. We will consider three cases: a receiver connected 
in the star, powered by a four-wire system or a three-wire system and a receiver 
connected in the delta. We assume that the load has a resistive-inductive 
character– most often found in practice. 

a) Four-wire system – receiver connected to the star 

 
 

Figure 43.12. Scheme of connection receiver in the star, powered by a four-wire system 
with break in one wire 
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Due to interruption in phase A, the current in this phase and the phase voltage 
are equal to zero. The currents in the remaining phases are: 
 

 B B
B

B B

U" U
I" = =

Z Z
  and         C C

C
C C

U" U
I" = =

Z Z
               (43.20) 

Thus, the currents in the non-damaged phases are the same as under normal 
operating conditions. Their geometric sum is equal to the complex value of the 
current in the neutral wire: 

 

                              I"
B
 + I"

C
 = I"

N
                       (43.21)  

The four-wire system scheme is shown in the Fig. 43.13. 

 

 
Figure 43.13. Phasor diagram for system in Fig. 43.12. 

 
Based on the diagram, it can be shown that the rms current value  in the neutral 
wire equals: 
 

         
2 2 o

N A C B CI = I +I -2I I cos(180 -β)                    (43.22) 

 
where β - the angle between current phasors I"B and I"C. 

 
 It follows from the above formula that the maximum rms value of the 
current in the neutral wire occurs at equal loads of both phases, or at the total 
load of one of them. 
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b) Three-wire system – receiver connected to the star  
                                  
 

 
 

Figure 43.14. Scheme of connection receiver to the star, powered by a three-wire system 
with break in one wire 

 
It is apparent from the above scheme that the three-wire system with 

receiver connected in the star after one phase is broken transforms into a two-
wire system powered by the line voltage UBC. Due to the current I"a = 0, so the 
phase voltage U"a = 0. The neutral voltage UN of the system is: 
 
 

'' A B C fA B C B C B C
N

A B C f

Y U +Y U +Y U Y (U +U ) U +U
U = = =

Y +Y +Y 2Y 2
.  (43.23) 

 
Hence the phase voltages are equal respectively: 
 

// // B C BC
B B N B

U +U U
U =U -U =U - =

2 2
, 

(43.24) 
// // C B BC
C C N

U -U U
U =U -U = =-

2 2
. 

 
However, in both other phases it flows the same as the rms value of the phase 
current, defined by the formula: 
 

// // BC BC
B C

B C f

U U
I =-I = =

Z +Z 2Z .                                  (43.25) 
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The phasor diagram of three-wire system is shown in the Fig. 43.15 

 
Figure 43.15. Phasor diagram form system in Fig. 43.14. 

  
 
The rms value of the phase current is therefore: 
 

   // BC f
ff

f f

U 3U
I = = =0,87×I

2Z 2Z
                       (43.26) 

 
where If  - the rms value of the phase current in the symmetrical system. 

 
c) receiver connected to the delta  
 

 
 

Figure 43.16. Scheme of connection receiver to the delta with interruption in 
one wire 

 
On the basis of the above scheme we can conclude that the voltage UBC and 

current in the second phase will not change. 
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 // BC
BC BC

f

U
I =I =

Z
  .             (43.27) 

However, the currents in the first and third phases are the same and equal to half 
value of the current of the second phase: 
 

             BC
AB CA

f

U
I =I =

2Z
 .                   (43.28) 

The phasor diagram of presented system is shown in the Fig. 43.17. 
                                                    

 
Figure 43.17. Phasor diagram form system in Fig. 43.16. 

 
Due to the broken wire - current phase IAB , changed by 120. In a similar way, 

the current ICA phase have changed by 120. The voltages of first and third phase, 
as well as currents, have decreased by half value, and their phasors rotated by -
120 and + 120 respectively. 
 

 
// // // AB BC

AB fAB CA
f

I U
U =U =I ×Z = =

Z 2
 .                              (43.29) 

 
The complex values of the line currents are defined by the formulas: 
 

// //
B BC ABI =I -(-I ) , 

                                                                                                                     (43.30) 
// // //
C CA BCI =-I -I  . 
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Hence: 
 

// BC
B BC BC

I 3
I =I + = I

2 2
  , 

                    
(43.31) 

// BC
C BC BC

I 3
I =-I - =- I

2 2  . 

 
43.1.5.3. Short circuit in one of the phases of the receiver connected in a star, 

powered by a 3-wire system 
 

 Another case of unsymmetrical system is a short-circuit in one of the 
phases of the receiver connected to the star, powered by a 3-wire system. The 
scheme of this case shows the Fig. 43.18. 
 

 
Figure 43.18. Short-circuit in phase A of receiver connected to the star in a 3-wire 

system 
 
 Based on the formulas (43.19) the phase currents values prior to the 
occurrence of a short circuit were as appropriate: 
 

A N
A

A

U -U
I =

Z
          B N

B
B

U -U
I =

Z
         C N

C
C

U -U
I =

Z
.             (43.32) 

 After short circuit in phase A, the voltage between the generator and 
receiver neutral points becomes equal to the voltage UA : 

 

               UN = UA    .                                                      (43.33) 
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Substituting this dependence to formulas (43.32) we receive: 

 

// B A A B AB
B

B B B

U -U U -U U
I = =- =-

Z Z Z
 

                                                                    (43.34)  

     // C A A C AC
C

C C C

U -U U -U U
I = =- =-

Z Z Z
  . 

 
from the I Kirchhoff’s law we receive: 
 

           // // // AC ACAB AB
A B C

B C B C

U UU U
I =-(I +I )=-(- - )= +

Z Z Z Z
.                (43.35) 

 
 It is apparent from the above equations that the phase B and C receivers 
will have an line voltage (400 V in the case of a phase voltage 230 V) which may 
cause damage. The phasor diagram is presented in the Fig. 43.19. 

 
Figure 43.19. Phasor diagram of receiver connected in the star with a short circuit in one 

phase in 3-wire system. 
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43. Laboratory tests. 
 
 Diagram of the measuring system for tests of the 3-phase system is 
presented in Fig. 43.20. 
          

 
 

Figure 43.20. Diagram of the measuring system for tests of the 3-phase system 
 
  
 Marks: 
 V1f, V2f, V3f, VN – digital voltmeter 

 A1f, A2f, A3f, AN – digital ammeters 

 W, W1, W2, W3,N – circuit breakers 

 ZA, ZB, ZC – phase impedances of 3-phase receiver 

 Tr – 3-phase transformer to decreased the voltage value 
MPS – Measuring Parameters System 
(line voltages measurement: V12, V13, V23 
line currents measurement: A1, A2, A3) 

 
 
Note: The values of the phase currents should not exceed 1 A due to technical 
limits  resulted of used slide resistors. 
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43.2.1 Determination of the phase sequence for supply grid 
 
To determine the phase sequence of L1, L2, L3 connect the equivalent phase 
sequence indicator (the capacitor connect to phase L1).   
 

43.2.2 Test of the receiver connected in the star.  
 

 Between pair of terminal A1 – A2, B1 – B2, C1 – C2 connect  phases of 
receiver ZA, ZB, ZC according to the Fig. 43.21. 

 
Figure 43.21. Receivers in 3-phase system 

  

 Labels: R1, R2, R3 – slide resistors, 
   B1, B2, B3 – signaling bulbs. 
 
 Slide resistors are used as the receiver in the laboratory tests, coupled in 
parallel with the lighting bulbs. Resistors allow for smooth adjustment of the rms 
value of the phase currents. Such receivers ZA, ZB, ZC have resistance character. 
 

The receivers have to be connected in the star in the systems (Fig. 43.21), 
short points A3, B3 and C3 with each other, or by connecting these points with 
the point N of the receiver (4- wire system). 
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Measurements shall be performed for all currents, voltages and power in 
the following cases: 
 
1) 4-wire symmetrical system (Switch on: W1,W2,W3,WN and W) 
Set resistors to obtain same values of phase currents. 
 
2) 4-wire system with a break in one phase. 
Open the switch in the selected phase wire 
e.g. W1. (Switch on: W2, W3, WN and W) 
 
3) 3-wire symmetrical system. Switch on W1. 
Open the switch WN. (Switch on: W1,W2,W3 and W) 
 
4) 3-wire system with a break in one phase. 
Open the switch in the selected phase line 
e.g. W1. (Switch on: W2,W3 and W) 
  
5) 3-wire system with short circuit in one phase. 
Open the switches: W, W1,W2,W3. Using wire short selected receiver. 
e.g. A1 with A2. Make sure that the switch WN is not closed. Power on. (Switch 

on: W1,W2,W3 andi W)). 
       

 
The results of the measurements note in table 1a and 1b. 
Line values of currents and voltages read from the Measuring Parameters 
System (MPS), and voltmeter VN and ammeter AN. 
The phase values of the current and voltage of the receiver read from voltmeters 
V1f , V2f , V3f and ammeters A1f , A2f , A3f . 
The power values retrieved by the receivers are read from Measuring Parameters 
System (MPS)
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Table 1a. 

Line parameters 

 

Table 1b. 
Phase parameters 

 
 
Based on obtained results: 
a) desrcibe the relationship between the phase and line voltages of the 

symmetrical system, 
b) calculate the impedance of load of each phase, 

using the following formulas: 

    ,        arccos
×I

 ,               (43.36) 

where: 
PP - measured power values, or values calculated from the formula:  
for load with resistance character (cos= 1), 
UP -indication of the voltmeter measuring voltage at the load of the selected phase, 
IP -indication of the ammeter measuring current of the selected load phase, 
ZP -module of the total load impedance of the selected phase, 
P -the angle between the voltage and current indication of the selected phase. 
 
c) draw phasors diagrams of voltages and currents for the measuring points 

selected by the teacher. 
 

 
Results of  the calculation note in table 2 and provide example calculations. 
 
 
 

 U12 U23 U31 UN I1 I2 I3 IN 

[V] [V] [V] [V] [A] [A] [A] [A] 

1.         
2.         
3.         
4.         
5.         

 U1P U2P U3P I1P I2P I3F P1P P2P P3P 

[V] [V] [V] [A] [A] [A] [W] [W] [W] 

1.          
2.          
3.          
4.          
5.          



 
Tests of 3-phase systems  203

Table 2. 

A summary of the calculation results for the receiver connected in the star. 

43.2.3 Test of the receiver connected in the delta . 
The receivers have to be connected in the delta in the systems (Fig. 43.21) 

by short the corresponding points. Since there may be two possibilities to 
connect to the delta - you need to note which points were connected (e.g. 
ammeter A1F can measure current I12 or I13). For proper operation of the MPS 
meter, it is necessary to switch of  WN. 

Measurements shall be performed for all currents, voltages and power in 
the following cases: 
 
1) 3-wire symmetrical system. 

Set the same values for the phase currents. (Switch on: W1,W2,W3 and W) 
 
2) 3-wire system with break in one phase. Open the switch in the selected 

phase line e.g. W1. (Switch on: W2,W3 and W) 
 
The results of the measurements note in table 3a and 3b: 
 

Table 3a. 

Line parameters 

 

Table 3b. 
Phase parameters 

 

  Z A        A       Z B       B       ZC      C 

[] [ ] [] [ ] [] [ ] 
1.       
2.       
3.       
4.       
5.       

 U12 U23 U31 I1 I2 I3 

[V] [V] [V] [A] [A] [A] 

1.       

2.       

 U1P U2P U3P I1P I2P I3F P1P P2P P3P 

[V] [V] [V] [A] [A] [A] [W] [W] [W] 

1.          

2.       - - - 
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Based on obtained results:  
a) verify the theoretical relationship between the rms phase and line voltages, 

currents values of the receiver connected to the delta, 
b) calculated on the basis of the indications of voltmeters and ammeter the 

total load impedance of each phase (according to 43.36), 
c) draw phasors diagrams of voltages and currents for the measuring points 

selected by the teacher. 
 

Results of  the calculation note in table 4, and provide example 
calculations: 

Table 4 

Summary of calculation results for the receiver connected to the delta. 

 
 

43. Remarks and conclusions. 
 
 The report shall include: tables with results of the measurement and 
calculation, example of calculations, selected phasor diagrams, comments on the 
course of the exercise and discussion on the results obtained. Compare the results 
with theoretical dependencies.  
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Representation of sinusoidal quantities using complex numbers 
 

 The calculation of sinusoidal current circuits is considerably simplified by 
using complex numbers. We will signify the unity of the imaginary by J ; used in 
mathematics the designation of the unity of the imaginary symbol i is inconvenient 
in electrical engineering, because it  means a temporary value of current. 
The complex number  is presented in the form: 
 

z=a+jb, 

where a = Re{z} is the real part, and b = Im z} is the imaginary part of the complex 
number. 
The above expression of a complex number is an algebraic form. The complex 
number can also be presented in an exponential form: 
 

z = z ej, 

or trigonometric: 

z = z (cos+j sin), 

wherein z =
22 ba  is a complex number module, and tan 1  the 

complex number argument. 
The geometric image of the complex number z is on the plane of the complex 
variable vector OA (see figure). 
 

      

Figure 43.22. Geometric image of a complex number. 
 
 
The transition from exponential to trigonometric form allows Euler's formula: 

e j =cos+j sin
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Based on the above formula, taking into account that 2π is the period of 
trigonometric function, we receive 
 

e j (+k2)= e j ,       k=1, 2, ..., 
 

The result is that the complex number argument is not explicitly specified, but it 
takes a value that differs by any multiple of angle 2π. 
Based on the above analysis, the voltage u=Um sin(t+u), and the current 
i=Im sin(t+i), can be represented in a complex form as follows: 
 

Umt = Um e
 utj   , and   Imt = Im e

 itj  
. 

 

The instantaneous values of u and I are obtained by extracting the imaginary part 
of the expression. u=Im {Umt}, i=Im {Imt}. 
The complex (symbolic) values of voltage and current determine the 
corresponding expression: 

U = U e uj
, and   I = I e ij

. 
 

The module of the complex value and its argument equal the rms value and the 
phase sinusoidal waveform respectively. 


