
EXERCISE 50 
TEST OF TRANSIENT STATES 
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I. General information 
 
1. Introduction 
 In the case of DC generators, the voltages and currents in the circuits are 
constans quatities, and in the case of sinusoidal current generators, voltages and 
currents change sinusoidally. This type of circuit state is called stady or stationary 
state. In electrical circuits there is also a phenomena caused by a change in the circuit, 
such as switching the power source into a circuit or shorting a part of the circuit. These 
phenomena are called transition or transient states. In general, transient states are 
defined as physical processes occurring at transformation an electrical circuit from one 
steady state to another. In many cases, transient states are undesirable phenomena. For 
example, transient phenomena occurring at short circuits and when voltages are 
switched on in electrical circuits. 
In other cases, transient states are the normal operating state of devices, e.g. automatic 
adjustment systems. 
 In the analysis of the transient states of the electrical circuits, the voltage u and 
current i are presented in the form of a sum of two components: 
                                              u=uu+up      (1)                                         
             i=iu+ip.       (2) 

The uu i iu quantities are staedy state components of voltages and currents, while up 

and ip are the transient components of these quantities. 
  

Any disruption of the system causes the transient state. The physical system is 
called stable when it returns to the equilibrium state after the disruption. When the 
system is stable, transient states disappear after a sufficient period of time. Therefore, 
in a stable system the transient components disappear over time, i.e. the 
 0pu and 0pi , when t . 

It follows that in stable systems 
 uuu  and uii  , where t , 

so, after sufficient time, a steady state is occurred in the system. 
Theoretically, the transient state takes infinitely long time, but practically after 

a sufficient period of time the circuit achieves a steady state. 
                           

 To facilitate the analysis of transient states, it is assumed that a disturbance that 
is a source of transient occurred at t = 0.This is the initial state. 
The values of variables in the initial state are called initial conditions. 
 
 Essential features of electrical systems containing R, L and C components, 
are two conditions resulting from the principle of energy conservation (inductor 
current and voltage on capacitor continuity conditions): 
 
1) the current in the inductor must change continuously; if it had changed in a stepped 

way, the inductor would induce infinitely high voltage resulting from the formula 
(28), which is impossible, 

2) the voltage on the capacitor must change continuously; if it changed in a stepped 
way, the capacitor would flow infinitely high current resulting form the formula 
(6), which is impossible. 
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 These conditions can be written as follows: 
 
ad 1)                 i(0-)=i(0)=i(0+)        (3) 
ad 2)                uC(0-)=uC(0)=uC(0+)            (4) 
 
where i(0-) and i(0+) mean respectively the left and right-hand limits of the function 
i(t) at time t = 0,. and uC(0-) and uC(0+) means the left and right limits of the 

function uC(t) in thet ime t = 0.  
Considering state of the circuit immediately before t = 0 in which the disruption 

occurred, we designate the current i(0-) in the inductor and the voltage uC(0-) on the 
capacitor. 

The initial values i(0),uC(0) are equal to i(0-), uC(0-). 
Considering all the inductors and capacitors in the circuit, a sufficient number of initial 
conditions are obtained, necessary to solve the differential equations. 
   
2. RC Circuits 

                         
Fig. 1. Serial connection of R, C elements. 

 
The voltage at the terminals of serial connection of the R, C  (Fig. 1) is expressed by 
formula: 
                                                                

R i u
c

u        (5) 

wherein the i – current in the circuit, u - supply voltage, 
uc -voltage on capacitor, R -resistance of the circuit.                   
Substituting to the above formula the expression of the current in the capacitor: 
 

                                                            
dt

du
Ci C      (6) 

 
We receive the differential equation: 
                        

                                                  u
c

u
dt

du
CR C        (7) 

 
The simplified differential equation is expressed by the formula: 
                       

                                                R C
du

dt
u
cp

Cp    0     (8) 
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The general solution of the above simplified equation is the equation 
called the Helmholtz equation: 
 

                                                 u A eCp
t   /       (9) 

                                                                                

wherein A -constant, and  = RC is the time constant of the RC circuit.            

The inverse of the time constant   are called the damping constant = 1/RC.             
 

                   
Fig. 2. Course of transient voltage on capacitor 

in a series of R, C elements. 
 
A time constant equal to the subtangent OB, characterized the speed of decreasing the 
transient component uCp (Fig. 2). Time constant  is the time after which the voltage 
uCp would have achieved a value equal to zero if the speed of its reduction was 

constant and equal to the speed at the moment t = 0, so 
RC

A

dt

du

t

Cp 








0

. 

When the time constant is low (large damping), then the exponential curve is steep, 
therefore the voltage uCp decreases rapidly.          
If the time constant is high (small damping), then the exponential curve is flat, 
therefore voltage uCp decreases relatively slowly.            
 
 
 
2.1. Switching on the DC voltage 
 

                              
                              

Fig. 3. Scheme of DC voltage charging system of capacitor. 
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Fig. 4. The voltage waveform on the capacitor in the system from Fig. 3. 

 
 When closing switch at t = 0, the DC voltage is connected to the circuit (Fig. 
3). After sufficient time, the capacitor C charge to voltage U, therefore the voltage is 

determined uCu= U. According to the formula (1) and (9), we get a relationship to the 
instantaneous value of the voltage on the capacitor: 
 
   u u u U A eC Cu Cp

t      /                     (10)  
 

the time constant of the considering circuit is  = RC. 
Assuming that the capacitor C was not charge before closing the switch, we have 

uC(0-) = 0, according to the equation (4) the voltage on the capacitor uC(0) = 0. 
Substituting t = 0 to the formula (10), we get U + A = 0, so A = U. 
 
The instantaneous value of the voltage on the capacitor (fFig. 4) is expressed by the 
formula: 
 
                                    u U eC

t   ( )./1        (11) 
Voltage on the resistor 
                                    /t

CR eUuUu       (12) 

decreases exponentially from U to 0 with time constant . Current in the considering 
circuit: 
 

     i
u

R

U

R
eR t   /       (13) 

 

exponentially disappears from U/R to 0 with time constant .. 
 
2.2. Discharge of the capacitor 
 

The capacitor C (Fig. 5) has been initially charged to the U voltage. 

At the moment of t = 0, we short the capacitor by switch through the resistor, which 
means the capacitor is discharged. 
After a sufficient period of time from t = 0, the capacitor will be discharged, wherein 
the voltage on it decreases to zero, therefore the establisehd voltage on the 

capacitor uCu= 0. 
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Fig. 5. Scheme of capacitor discharge system. 

 
The instantaneous value of the capacitor voltage is expressed by equation: 
 
   u u u A eC Cu Cp

t     / ,     (14) 

 
wherein the time constant  = RC. 
Directly before switching the switch , the voltage on the capacitor was equal 
 

u u UC C( ) ( )0 0   .      (15) 
 
Substituting t = 0 to (14), we receive A U , therefore u U eC

t   / . 

The voltage on the capacitor disappears exponentially from U to 0 with time 

constant . The current in the circuit can be determined from the equation (6): 
 

i C
du

dt
C U e

U

R
eC t t     




   / / 


1

.    (16) 

 The energy of the capacitor electrical field before switching was W C UC   
1

2
2

After the phenomena have been established in the circuit, the capacitor is discharged, 
so its energy equals zero. During discharging the capacitor, the current is flowing 
expressed by formula (16), so in the resistor R a conversion of electricity into heat is 
occurred. The power lost in the R resistor is 
 

  p R i
U

R
eR

t     2
2

2 / .      (17) 

 
The thermal energy produced in the resistor equals 
  

  W p dt
U

R
e dt C U WR R

t
C      


 



 
0

2
2 2

0

1

2
/ .    (18) 

 
This means that the energy of the capacitor electric field is completely transformed 
into Joule's heat in the R resistor. 
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2.3. Switching on sine wave voltage 

 
Fig. 6. Switching on sine wave voltage to the R, C connection. 

 
Closing switch in time t = 0, to the circuit (Fig. 6) sinusoidally variable voltage is 
switched on 
   u U tm u sin( )  .       (19) 
 

After a sufficient period of time from the moment t = 0 in the circuit flows a steady 
current 

   )sin(   u
m

u t
Z

U
i ,     (20) 

where 

   22
2 1

C
RZ


 ,   tg

CR



 

1
 .    (21) 

 

The established voltage uCu on the capacitor is delayed by 90 to the current iu, 
 

  ).cos()90sin( 





 u
m

u
m

Cu t
CZ

U
t

CZ

U
u   (22) 

 

Temporary value of the voltage on the capacitor  

  


/)cos( t
u

m
CpCuC eAt

CZ

U
uuu     (23) 

where  = RC. 
 
Suppose that the capacitor was not charged before closing the switch, i.e. the 
u uC C( ) ( )0 0 0   . Substituting t = 0 to the formula (23), we receive 

 

0)cos(  A
CZ

U
u

m 


, so  )cos( 


 u
m

CZ

U
A .  (24) 

 
Temporary value of the voltage on the capacitor 

   )cos()cos(
/ 




 
u

t

u
m

C et
CZ

U
u .   (25) 

 
The temporary current value in the circuit  

     

















u

t

u
mC

CR

e
t

Z

U

dt

du
Ci cossin

/

.   (26) 
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3. RL circuits 

                             
Fig. 7. Serial connection of R, L elements. 

 

The voltage on the serial connection of the R, L elements is expressed by: 
 
                                                         R i u uL                       (27)       
 
where i -current in the circuit,  u - supply voltage, 

R- the resistance of the circuit, uL -voltage on the inductor expressed by the formula: 

                                                          u L
di

dtL       (28) 

where L -inductance of the circuit.                          
The simplified differential equation for transient current takes the form of 
 

R i L
di

dtp
p   0      (29) 

 
where ip -component of the transient current, 
other markings as before. 
                                                                               
The general solution of the above simplified equation is the equation 
called the Helmholtz equation: 
 

i A ep
t   /       (30)                                      

wherein A -constant, and  = L/R is the time constant of the RL circuit.            

The inverse of the time constant   are called the damping constant = L/R.             

                 
Fig. 8. Course of transient current in connected 

R, L elements. 
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The time constant is characterized the speed of decreasing current ip (Fig. 8). 
When the time constant is low (large damping), then the exponential curve is steep, so 

the magnitude ip decreases quickly.    
If the time constant is high (small damping), then the exponential curve is flat, so the 

magnitude ip decreases relatively slowly.     

When t > 5, then e -t/  < 0.01, the transient current ip become negligible and the 
total current achieve the determined value.   
 
3.1. Switching on the DC voltage 

                            
                              

Fig. 9. Switching on the DC voltage to the R, L circuit. 

 
Fig. 10. Current waveform on branch with R, L in circuit from Fig. 9. 

 
 Closing switch at time t = 0, the DC voltage is connected to the circuit (Fig. 9) 
After sufficient time from t = 0, in the circuit flows the current 

i
U

Ru  .        (31) 

 
According to the formulas (2) and (30), we get a dependency on the temporary value 
of the inductor: 
 

   i i i
U

R
A eu p

t      /      (32) 

 

The time constant of the considering circuit is  = L/R. 
 

Directly before the switch on, the circuit was interrupted, so i(0-) = 0, and according 
to the equation (3) current in the circuit i(0) = 0. 
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Substituting t = 0 for the formula (32), we get 
U

R
A  0 , and therefore A

U

R
  . 

 
The temporary value of the current in the concidering circuit (Fig. 9) is expressed by 
the formula: 
 

i
U

R
e t   ( )./1        (33) 

Voltage on the resistor 
 

 u R i U eR
t    1 /      (34) 

 

exponentially increases from 0 to U with time constant . 
 
Voltage on the inductor 
 

   u U u U eL R
t     /       (35) 

decreases exponentially from U to 0 with time constant  (voltage uL can also be 
determined from equation (28)). 
 
 

3.2. Short circut through inductor 
 

         
Fig. 11. Shorting branches with R, L elements. 

 
At the moment t = 0 we short a branch of the circuit containing the elements R and L. 
After a sufficiently long period of time from t = 0, the current in this branch will 

decrease to zero, so the value is determined iu= 0. 
The temporary value of current in the induction inductor is expressed by 
 
   i i i A eu p

t     / ,      (36) 

wherein the time constant   = L/R. 

Directly before switching in the circuit, the DC current flowed
U

R R1 
 

   i i
U

R R
( ) ( )0 0

1

  


.      (37) 

 
 



 11

 

Substituting t = 0 for the equation (36), we receive A
U

R R


1

, therefore, 

i
U

R R
e t


 

1

/ .       (38) 

The current in a shorten branch disappears exponentially from 
U

R R1 
 to 0 with the 

time constant . 

Let's say that the circuit containing the inductor flows current I
U

R Ro  1

 , so 

the inductor energy contained in its magnetic field is W L IL o  
1

2
2 . 

After the phenomena are established in the circuit, the current in the inductor is equal 
to zero, so its energy is also equal to zero. 

Due to the fact that during the short circuit of the RL the current is flowing 
(equation 38), then in the resistance R of the inductor decline a conversion of electrical 
energy into heat. 
The power resulting from the inductor resistance is 
   P R i R I eR o

t      2 2 2 / .      (39) 
The thermal energy resulting from the inductor resistance equals 

  W p dt R I e dt L I WR R o
t

o L       


 


 
0

2 2 2

0

1

2
/ .    (40) 

This means that during the transient state period all the energy WL contained in the 
magnetic field of the inductor is converted to joule heat (in inductor resistance). 
 
 
3.3. Switching on sine wave voltage 
 

                        
Fig. 12. Switching on the sine wave voltage to the R, L connection. 

 
Closing switch in time t = 0, to the circuit (Fig. 12) sinusoidally variable voltage is 
switched on 
   u U tm u sin( )  .       (19) 
 

After a sufficient period of time from the moment t = 0 in the circuit flows a steady 
current 

   )sin(   u
m

u t
Z

U
i ,     (20) 
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where 

   222 LRZ  ,   tg
L

R
 
  .    (21) 

    (43) 
 
Temporary current value in the circuit 

   /)sin( t
u

m
pu eAt

Z

U
iii  .    (44) 

wherein   = L/R. 
Suppose that before closing the current in the circuit has not flowed, so    i i0 0 0  

. 
Substituting t = 0 to the formula (44), we receive 

  0)sin(  A
Z

U
u

m  ,      (45) 

that is 

  )sin(   u
m

Z

U
A .       (46) 

 
Temporary current value in the circuit 
 

   )sin()sin(
/  

 
u

t

u
m et

Z

U
i .    (47) 

 
 
4. RLC Circuits 
 

 
Fig. 13. Serial connection of R, L, C elements. 

 
The voltage on the serial connections of the R, L, C elements is expressed as follows: 
 

R i L
di

dt
u uC         (48) 

 

where: i - current value, u -supply voltage, uc -voltage on the capacitor and  
R i L - respectively circuit resistance and inductance.       
Substituting to the above equation the formulas: 
 

i C
du

dt
C  and 

2

2

dt

ud
C

dt

di C     (49) 
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We receive the differential equation of the second row: 

LC
d u

dt
RC

du

dt
u uC C

C

2

2        (50) 

  
The simplified differential equation is expressed by the formula: 

LC
d u

dt
RC

du

dt
uCp Cp

Cp

2

2 0      (51) 

 
The characterising equation of the above differential equation is: 

s
R

L
s

LC
2 1

0       (52) 

 
and the elements of this equation are equal: 
                                     

        
LCL

R

L

R
s

1

42 2

2

1           

and           (53) 

LCL

R

L

R
s

1

42 2

2

2  ; 

Entering the markings: 

- damping constant     

R

L2
   (54) 

 - pulsation of non-dampened vibration   
1

LC
   (55) 

o - own circuit pulsation      o  2 2   (56) 
 
In the RLC circuits can be extract three cases of circuits depending on the distinctive 
sign of the characteristic equation:: 

1) Overdamped circuit - when a relationship occurs 

R
L

C
 2    (57) 

The characteristic equation has two (different) negative elements 
real s1 and s2 (s1< 0, s2< 0 and s1 s2); 
 

2) Critically damped circuit - when the condition is fulfilled 

R
L

C
 2     (58) 

 in this case there is one negative real element s1= s2= 
 

3) Underdamped circuit - exists when 

R
L

C
 2     (59) 

 
 In this case, the characteristic equation has two distinct complex elements 

s j o1     and ojs  2 .       
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4.1. Switching on the DC voltage 

                           
 

Fig. 14. Switching on the DC voltage in the circuit containing the elements R, L, C. 
 

Closing the switch at the moment t = 0, we turn on the voltage U to the serial 
connection R, L, C (Fig. 14), so the capacitor is charged by the resistor and the 
inductor. We assume that t = 0 has not been charged. After a sufficient period of time, 
the capacitor is charged to the voltage U and then the current in the circuit will be 

equal to zero, that is uCu = U and iu = 0, therefore  

   u U uC Cp  ,  i ip .      (60) 

Before the switch was closed, the capacitor voltage was equal to zero, and the current in 
the circuit equals zero, so on the basis of the continuity equations (3) and (4) we have: 
 

  i(0-)=i(0)=0 ,  uC(0-)=uC(0)=0    (61) 
 
4.1.1. Overdamped circuit 
 

 u A e A eCp
s t s t    

1 2
1 2     (62) 

 i C A s e A s ep
s t s t       

1 1 2 2
1 2    

  

where A1; A2 are integration constants. The characteristic equation (52) has two 
distinct negative real elements s1 and s2.         
Substituting t = 0 to the above equation and taking into account the initial conditions 
specified by the formula (61) we find 

  U A A  1 2 0 , and A s A s1 1 2 2 0    .   (63) 
By solving the above system of equations with two unknowhows, we find 

  A
U s

s s1
2

1 2





, A
U s

s s2
1

1 2

 



,    (64) 

than: 

   u U
s s

s e s eC
s t s t  


   









1

1

1 2
2 1

1 2 ,   (65) 

     tstsC ee
ss

ss
CU

dt

du
Ci 21

21

21 


 .    

U 
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4.1.2. Critically damped circuit 
 
The solution of the simplified differential equation is: 

  t
Cp etAAu  

21     (66)

   t
p etAAACi   212     

where A1, A2 are integration constants.                                             
The characteristic equation of the above case has one negative element  21 ss . 
Substituting t = 0 to the above equations and using the initial conditions (61), we have 

01  AU , and 012  AA        (67)     
so 

       UA 1 , UA  2 .    (68) 
 
After substituting A1, A2 to the equation which are specifying uC and i, we receive
  
 
    t

C etUu  11 ,      

          (69) 

  tC etCU
dt

du
Ci   2 .  

  
The wave coures of the transient currents and voltages in these circuits have the same 
character as in the aperitic circuits. The circuit damping facor defined as the ratio of 
constant damping to the pulsation of the non-attenuated circuit is assumed for this case 
a value of 1, and for aperitic circuits this value is always greater than the one. 
 
4.1.3. Underdamped circuit 
 
There are two different complex elements of characteristic equation: 
                        

s j o1     and s j o1     ;                            (70) 
 

where   - constant damping     

R

L2
  (71) 

 - pulsation of non-dampened vibration    
1

LC
  (72) 

o - own circuit pulsation       o  2 2  (73) 
 

 
The solution of the simplified differential equation for the case under consideration is: 

 u A e tCp
t

o      sin       (74) 

    i C A e t e tp
t

o o
t

o                     sin cos  

where A, ß are integration constans.                                               
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By performing an analysis similar to the previous cases, we receive 

  













  

2
cos

1
1




 te
LC

Uu o
t

o

C ,    

and           (75) 

  i
U

L
e t

o

t
o   


 sin . 

 
4.2. Switching on sine wave voltage         

                       
Fig. 15. Swithcin on sine wave voltage in a circuit containing R, L, C elements. 

 
Closing switch in time t = 0, to the circuit (Fig. 12) sinusoidally variable voltage is 
switched on 
   u U tm u sin( )  .       (76) 
 

After a sufficient period of time from the moment t = 0 in the circuit flows a steady 
current 

   )sin(   u
m

u t
Z

U
i ,     (77) 

where 

   
2

2 1






 

C
LRZ


 ,   tg

L
C

R






1

 .  (78) 

  
 

Solving the systems of differential equations for an aperitic case (62), an critical 
aperitic (66) and an oscillating (74), we find the transient components of the voltage on 
the capacitor and current in the inductor (branches of R, L, C). 
Equations (76) and (77) determine the components of the temporary voltage on the 
capacitor and the current in the inductor. 
The course of current i and voltage uC is obtained by adding two courses, respectively 
ip, iu, and uCp, uCu. 
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II. Laboratory tests 
  
1. Description of the test system 
Equipment and components used: 
 tested system TRANSIENT STATES 
 stabilized power supply (5V) 
 set of data acquisition system 
 - digital oscilloscope with memory Hameg 
 - computer with ocilloscope software SP107 
 - printer 
 
Measuring ciruit 

 

 
U - supply voltage (5V) 
Rs - serial resistor (50) 
L – inductor (Rl - inductor resistance) 
C - capacitor 
RR - resistor (100) 
W1, W2, W3, W4 - switches 
P1, P2, P3 - switches 
Z - button shorting capacitor 
2, 3, 4, 5, 6, 7, 8, 9 - connection terminals 
S0, S1, S2 – BNC sockets, where S0 – power signal, S1 – supply voltage signal 
(S1* - observed on oscilloscope) and voltage of test element (S1** - observed 
on oscilloscope), S2 – oscilloscope triggering signal. 
 
 
 

P2 P3 Z C1

Th
0

C2

Th

C3

h
0

C4

h

To the power supply 
input S0 

1

RS 

U 

0 

6 

W3 

L C 

8

RR

W4 

P1 4

W2 

W1 

2

7 9 53

To the 
oscilloscope 

inputs S1 
(S1* & S1**) 

To the 
oscilloscope 

input S2 
RL 
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Initial settings: 
  P1 at position 0, 
  W1, W2, W3, W4 at position OFF (down), 
  P2 and P3 at position 0, 
  S0 socket connected to the power supply, 
  stabilized power supply (5V) enabled, 
  switched on computer with the printer, 
  switched on the HAMEG oscilloscope, 
  output socket S1* (first slot S1) connected to CHI channel, 
  output socket S1** (second slot S1) connected to CHII channel, 
      
 for observation of voltage on the test object, 
  activate the CHII button  
(the message is displayed at the bottom of the screen: y2:1V =), 
  activate the SINGLE button  
(preparation of the oscilloscope by pressing the button again – indicated by a 
light diode RES next to the lighted diode SGL). 
 
 for observation of current in the circuit (voltage from resistor Rs = 50, 
  activate the CHII key with the DUALbutton, and the INV button.  
(on the bottom of the screen should display message: y1:1V= +  y2:1V=).  
In both channels set the same reinforcements. 
  activate the SINGLE button (preparation of the oscilloscope by pressing the 
button again – indicated by a light diode RES next to the lighted diode SGL), 
 
 
2. RC circuit tests 
 
During test of the RC circuit, two cases should be used: with capacities C1 and C2. 
Diagram of the RC circuit test system is shown below.  

 
 
 
 

1 
RS 

U C1 C2 

P2P1 

0 
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2.1. Switching on the DC voltage 
 
Steps for observing signals when switching on the DC voltage and to determine the time 
constant of these signals. 

1) Realize the initial settings. Connect terminals 2-4, and 3-5. 
Set the P2 switch to the C1 position (serial circuit of the Rs and C1 elements). 

  Switch W2 to ON position (up). 
 2) Set the oscilloscope to observe the appropriate course case. 

Proposed settings for observing the shape of the voltage waveform 1V/cm 
(CH II), and 20ms/cm, while observing the current waveform 1V/cm (CH I) 
and 1V/cm (CH II). 

 3) When the oscilloscope was prepared (the green RES LED is lighted), 
  attach the U = 5V voltage to the system by switching P1 to position 1. 
  On the oscilloscope we get the correct course. Switch P1 to position 0. 
 4) Usinga program running after turning on the computer, read the data 
  from the oscilloscope by selecting the READ option on the monitor screen. 
  The transmission is triggered (the RM light on the oscilloscope desktop) 
  which the expected signal will be displayed on the monitor screen. 

5) Prepare the received course for printing by selecting the printer icon in the mouse. 
  Print a course that is suitable for determining the time constant of the 

circuit. On the basis of the determined plotting of the constant time and known 
resistance circuit, determine the capacity of the system. 

 
 Perform the above steps for the C2 capacity (P2 at position C2). 
 The proposed setpoints for the time base signal amplification 50ms/cm. 

 
2.2. Discharge of the capacitor 
 
 The above steps are also performed for the C2 capacity (P2 in position C2). 
 The proposed setpoints for the time base signal amplification 50ms/cm. 

 
3. RL circuit test 
 
It is practically impossible to perform an ideal inductor, because it will always have 
a certain internal resistance. The test system used a inductor containing approx. 5000 coils 
wounded with copper wire with a diameter of 0,25mm2. 
The inductor has a certain RL resistance and this consequence is impossible to 
observation voltage only on the L inductance itself. 
To minimize the impact of RL resistance, you can connect additional (parallel) to the    
inductor resistor Rr= 100. The measurement system is shown below: 



 20

 
3.1. Switching on the DC voltage 

 
Steps for observing signals when switching on the DC voltage, 
and to determine the time constant of these signals. 
1) Realize initial settings. Connect terminals 2-6, and 3-7. 

 Switch W3 to ON position (up). 
2) Adjust the oscilloscope appropriately to observe the voltage shape between the terminals 

2-3, or the current shape of the test circuit. The proposed settings to observe the shape of 
the voltage waveform 1V/cm (CH II), and 5ms/cm, foro bservations of the current 
waveform 0.5 V/cm (CH I and CH II). 

3) When the oscilloscope was prepared, attach the voltage U = 5V, by switching P1 to 
position 1. On the oscilloscope screen, we get the right course. 

4) Use the computer program to read the data from the oscilloscope by selecting the READ 
option on the monitor screen. The expected signal will be displayed on the monitor 
screen. 

5) Prepare the received course for printing by selecting the printer icon. 
 Print a course that is suitable for determining the time constant of the circuit. Based on the 
determined the time constant and value voltage on the inductor terminals, determine the 
resistance value RL, and inductance of the inductor L. 
 
3.2. Short circuit through inductor 
 
     The steps for observing the signals during the switch off  the DC voltage in the RL system, 
and for the determination of the time constant of these signals shall be performed analogously 
as in 3.1.  By switching P1 from position 1 to position 0.   
 
 

 
 
 
 
 
 
 
 
 
 
 

1 

L 

RL 

RS 

U 

0 

P1 

real inductor 
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4. RLC circuit test 
 
During testing the RLC circuit, two options were used with different capacities for observation 
of overdamped and underdamped circuits (diagram below). 

 

4.1. Switching on of the DC voltage in the overdamped circuit 
 
Steps for observing signals while switching on the DC voltage. 
 1)  Realize initial settings. Connect terminals 2-6, 7-4 and 5-3. 
 Set the P3 switch in the 0 and P2 to position C1. 
  Switch the W2 and W3 switches to ON position (up). 

3) Adjust the oscilloscope appropriately to observe the shape of the voltage or current in circuit. 
  Proposed settings 1V/cm (CH I, CH II), and 10ms/cm. 

  When the oscilloscope is prepared (green RES diode is lighted), 
  attach the U = 5V voltage to the circuit by switching P1 to position 1 (up). 
  On the oscilloscope we get the correct course. Switch P1 to 0. 

4) Using a computer program, read the data from the oscilloscope by selecting the READ option 
on the monitor screen. The expected signal will be displayed on the monitor screen. 

5) Prepare the resulting waveform and print the received waveforms. 
 
4.2. Switching off the DC voltage in the overdamped circuit 
 

The steps to observe the signals must be performed analogously as in section 4.1. by 
switching P1 from position 1 to position 0. 
 

4.3. Switching on the DC voltage in the underdamped circuit 
 
The steps for observing signals during the switching on the DC voltage in the oscillating 
circuit perform similarly to the aperitic circuit (4.1), but when the P2 switch is set to pos. 0 
and P3 in pos. C3 (circuit with capacity C3). 
The proposed settings for this case are 1V/cm and 5ms/cm for voltage observation, and 0.5V/cm 
(CH I), 0.5 V/cm (CH II) and 5ms/cm for current shape observation. 
 

4.4. Switching off the DC voltage in the underdamped circuit 
 
The steps for observing signals when switching off the DC voltage in the oscillating circuit 
do the same as for the aperitic circuit (4.2), but when setting the P2 switch in pos. 0 and P3 
in pos. C3 (circuit with capacity C3). 
The proposed settings for this case are 1V/cm and 5ms/cm for voltage observation, and 0.5V/cm 
(CH I), 0.5 V/cm (CH II) and 5ms/cm for current shape observation. 
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5. Summary of results. 
 
a) for RC and RL circuits. 

Circuit 
type 

 iu uu R L C 
ms A V  H F 

RC1       

RC2       
Rl       

 
 
b) for RLC circuits. 

Circuit 
type 

s1 s2 iu uu R L C 
1/s 1/s A V  H F 

RLC1        
RLC3        

 
 

iu – determined current vaule  

uu – determined voltage value on terminals 2-3, 
 

R, L, C - total parameters of resistance, inductance and capacitance of the 
circuit. 
 
 

 On the basis of measurements and calculations make up both tables. 
For inductor circuits, it is important to remember its resistance RL (i.e. R = RS+ Rl). 
 
 For RLC circuit, designate the elements of the characteristic equation 
(S1 and S2), and determine the circuit using equations (57), (58) and (59). 
 
 Perform additional calculations for the specified values of the real circuit 
parameters: RS=50, RL=120, C1=220F, C2=1000F, C3=2,2F, C4=14,1F and 
L=0,4H. Compare the results obtained from the calculations and form the 
measurements. 

 
III. Conclusions and observations. 
 
The report shall include: computer prints, calculation of characteristic parameters (can 
be placed under printed courses), tables, conclusions and remarks of the laboratory 
studies which were carried out. 
 


