
 
 
 
 
 
 

1. Description and Properties of Signals 
and Systems 

 
 
 
 
1.1. Introduction 
 
 Generally, a signal is a function of one or more independent variables. 
However, we will consider the signals having one independent variable only; 
furthermore, this variable will be restricted to time. 
 Examples of signals include: time depending voltages and currents in an 
electric circuit, the variation in a gross national product, music waveforms, the 
variation of atmospheric temperature. 
 If a signal is represented at all instants of time, it is said to be a continuous-
time signal or simply a continuous signal. A signal which is specified at discrete 
instants of time is said to be a discrete-time signal or simply a discrete signal. 
Discrete signals occur either due to the nature of the process, e.g. the variation in 
the number of cars crossing the border every day, or due to the sampling process. 
Examples of continuous and discrete signals are shown in Fig.1.1. 
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 Fig. 1.1. Examples of continuous and discrete signals 
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 For the discrete signal, time can only take discrete values; therefore we write 
, where T( SnTx ) S is the time between samples and n is the number of the sample. 

However, not all discrete signals are formed by the sampling of the continuous 
signal and in such a case the signal is usually written ( )nx . Also with sampled 
signals, in general, we will omit the TS and write ( )nx . Sometimes the sampling 
interval is not constant and changes from one step to another, but such a case will 
not be considered in this book. 
 
 
1.2. Some properties of signals 
 
 In this section we will discuss some properties of both continuous and discrete 
signals. 
 
Reflection 
 
Let us consider a signal ; the reflected signal is described by . Thus, 
the reflected signal assumes at time –t the value of the original signal that occurs 
at time t. This is illustrated in Fig.1.2. 

( )tx ( )tx −

x(-t) x(t)

t1t0 t-t1 -t0-t t0

x(t), x(-t)

 
 Fig. 1.2. The reflection operation of continuous signal ( )tx  
 
We define reflection for discrete signals similarly (see Fig.1.3). 

  Fig. 1.3. The reflection operation of discrete signal ( )nx  
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Shifting 
 
Let  be an original signal. To obtain the shifted signal, for a shift t( )tx 0, the value 
of the original signal that took place at t must now occur at 0tt + . If t0 is positive, 
the shifted signal is called a delayed signal (see Fig.1.4) 

0 t0 t

x ( t- t 0 )x ( t)

x ( t) , x ( t- t 0 )

t 0 > 0

  Fig. 1.4. The shifting operation of continuous signal ( )tx  
 
The shifted signal is specified by ( )0ttx − . The shifting property can be directly 
applied to discrete signals. This is illustrated in Fig.1.5. 

  Fig. 1.5. The shifting operation of discrete signal ( )nx  
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Periodicity 
 
A continuous signal  is said to be periodic if there exists such a time interval 
T that 

( )tx

 
 ( ) ( ) ttxTtx allfor=+ . (1.1) 
 
The smallest time T is known as the period. It should be noted that if a signal is 
periodic with the period T, it is also periodic for any integer multiple of T. 
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Similarly, a discrete signal ( )nx  is said to be periodic if there exists such a 
number N that 
 
 ( ) ( ) nnxNnx allfor=+  (1.2) 
 
The smallest number N is known as the period. Examples of continuous and 
discrete periodic signals are shown in Fig.1.6. 

-T 0 T 2T 3T

x(t) x(n)

t 0 N n

(a) (b)

  Fig. 1.6. Examples of periodic signals 
 
 
1.3. Sinusoidal and exponential signals 
 
1.3.1. Sinusoidal signal 
 
 The most important periodic signal is the sinusoidal signal. It is justified since 
the voltages generated by alternators in power systems have a sinusoidal 
waveform, a sinusoid has convenient mathematical properties, a periodic signal 
can be expressed as a sum of sinusoidal terms. The sine and the cosine signals 
can be represented as follows: 
 
 ( ) ( ) tAtytAtx ωω cossin ==  
 
where A is the amplitude and ω is the angular frequency. The period T 
corresponds to angle π2 , hence, the equation 
 
  πω 2=T  
or 

  f
T

ππω 22
==  
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holds, where f is the frequency. Although there is a difference between ω and f, 
usually we omit the adjective angular and call ω frequency. 
 A general sinusoidal signal has the form 
 
  ( ) ( )αω += tAtx cos  (1.3) 
 
where α is known as the phase. 
 A discrete sinusoidal signal can be described by the relationship 
 
  ( ) ( )αω += STnAnx cos . (1.4) 
 
This signal is obtained by sampling the continuous signal 
 
 ( ) ( )αω += tAtx cos  
 
with the sampling interval TS. Since the sinusoid is a periodic function then 
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where k is an integer. The discrete sinusoid on the right hand side of (1.5) can be 
considered as the sampled continuous sinusoid with the sampling interval  and 
angular frequency 

ST

 

  ( )SS
S

kffk
T

k
+=+=+ πωωπω 22  

 
where fS is the sampling frequency. Thus, the discrete signal (1.4), sampling a 
sinusoid with angular frequency ω, will also be a sampling signal of any sinusoid 
with angular frequency Skωω +  where k is an integer. Hence, there are infinitely 
many continuous sinusoidal signals corresponding to the discrete signal (1.4). 
This leads to the conclusion that having the sampled signal (1.4) it is not possible 
to determine which of the continuous sinusoids is represented by these samples. 
Thus, there is an ambiguity between the sinusoid with the frequency ω and the 
sinusoids with the frequencies Skωω + . Consequently, the possibility of 
identifying the original signal by examining the sampled signal is lost. This effect 
is known as aliasing. 
 To illustrate the aliasing effect, we consider a sinusoidal signal having the 
frequency . This signal is sampled with the frequency . 
Using these samples, an ambiguity arises between this signal and a signal of 

Hz100=f Hz700=Sf
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frequency 700100 kkff S +=+ , where k is an arbitrary integer. The aliasing 
effect for 1=k  ( )Hz800=+ Skff  is illustrated in Fig.1.7. 

t

x(t)

  Fig. 1.7. Illustration of the aliasing effect 
 
 
1.3.2. Exponential signal 
 
 Let us consider an exponential signal of the form 
 

  ( ) ( )αω += tAtx je . (1.6) 
 
Using Euler’s identity we obtain 
 

  ( ) ( ) ( )αωαω +++= tAtAtx sinjcos . (1.7) 
 
Thus, the equations 
 

  ( ) ( )( )αωαω +=+ tAtA jeRecos  (1.8) 
 

and 
 

 ( ) ( )( )αωαω +=+ tAtA jeImsin  (1.9) 
 

hold. 
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Thus, sinusoidal signals can be expressed in terms of the complex exponential 
signal. 
 A discrete exponential signal has the form 
 
  ( ) ( )αω += STnAnx je . (1.10) 
 
Applying the Euler expression we find 
 
  ( ) ( ) ( )αωαω +++= SS TnATnAnx sinjcos . (1.11) 
 
Equation (1.11) implies that the discrete sinusoidal signals can be expressed in 
terms of the discrete complex exponential as follows: 
 
  ( ) ( )( )αωαω +=+ STn

S ATnA jeRecos  (1.12) 
 
  ( ) ( )( )αωαω +=+ STn

S ATnA jeImsin . (1.13) 
 
 
1.4. The unit step and the unit impulse 
 
 Our objective in this section is to define and analyze commonly used signals: 
the unit step and the unit impulse in the continuous time and the unit step 
sequence and the unit sample sequence in the discrete time. 
The unit step function is defined as follows: 
 

  
( )
( ) .

t
t

tu
tu

0
0

for
for

1
0

>
<

=
=

 (1.14) 

 
At  a discontinuity occurs. A plot of 0=t ( )tu  is shown in Fig.1.8. 

1

0 t

u(t)

  Fig. 1.8. Continuous-time unit step function 
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To define the unit impulse we consider a rectangular pulse function as depicted 
in Fig.1.9. 

  Fig. 1.9. Rectangular pulse function ( )tεΔ  
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This function is described by the relationship 
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 (1.15) 

 
Note that the area under ( )tεΔ  is 
 

  ( )∫
∞

∞−

=⋅= 11d
ε

εΔε tt . (1.16) 

 
As ε decreases, the width of the rectangle decreases, the height increases in such 
a manner that the area remains the same (see Fig.1.10). 

ε
1  

0 t 

( )tεΔ

ε  

  Fig. 1.10. Rectangular pulse function ( )tεΔ  for ε smaller than in Fig. 1.9 
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As 0→ε , the pulse function becomes the unit impulse or the Dirac delta 
function 
 

  (1.17) ( )
0
0
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for
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0
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with 
 

  (1.18) ( ) 1d =∫
−

tt
a

a

δ

 
for any real a > 0. 
Thus, the following relation holds 
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We know from the mathematical analysis that  
 

 ( ) ( )tgg
t

t

a

=∫ ττ d
d
d . 

 
Applying this rule to the integral that defines ( )tu  above, we obtain 
 

 ( ) ( ) ( )∫
∞−

==
t

t
tt

tu δττδ d
d
d

d
d . (1.19) 

 
A comment is important at this stage. We do not have any formal rule, on the 
ground of mathematical analysis, of deriving the equation in this way because the 
unit impulse is not a function in the classical sense. The unit step has a 
discontinuity point at the origin and the classical derivative does not exist. So we 
have derived this equation in an intuitive way. The validity of this operation can 
be strictly proved using the distribution theory, which is a branch of mathematics. 
 An extremely important feature of the unit impulse is its behavior as a 
combination with another function, as below 
 

  ( ) ( )∫
∞

∞−

− ttttf d0δ

 
where  is any positive or negative real number. 0t
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Since ( ) 00 =− ttδ  for all  then  0tt ≠
 
 ( ) ( ) ( ) ( )000 tttftttf −=− δδ . 
 
Furthermore, relationship (1.18) implies 
 

  ( ) .tt 10 =−∫
∞

∞−

δ

 
Using the above equations we obtain 
 

 . (1.20) ( ) ( ) ( )00 d tfttttf =−∫
∞

∞−

δ

 
 The counterparts of the unit step and the unit impulse in the discrete time are 
the unit step sequence called also the discrete-time unit step function and the unit 
sample sequence called also the unit pulse function or the Kronecker delta 
function, respectively. The unit step sequence ( )nu  is defined as follows: 
 

 
( )
( ) .

n
n
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nu
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for
for
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=
=

 (1.21) 

 
This is illustrated in Fig.1.11. 

  Fig. 1.11. Unit-step sequence ( )nu  
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The unit sample sequence ( )nδ  is defined by the relationship: 
 

 
( )
( ) .
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 (1.22) 
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This is illustrated in Fig.1.12. 

  Fig. 1.12. Unit sample ( )nδ  

δ(n) 

n 321 

1 

0 -1 -2 -3 

 
The unit sample can be expressed in terms of the unit step 
 
 ( ) ( ) ( )1−−= nununδ  (1.23) 
 
and conversely the unit step can be expressed in terms of the unit sample 
 

 . (1.24) ( ) ( )∑
−∞=

=
n

m
mnu δ

 
 
1.5. Continuous and discrete signal representation 
 
1.5.1. Continuous signal representation 
 
 Consider the continuous signal ( )tx  as shown by a smooth line in Fig.1.13. 

 Fig. 1.13. Signal ( )tx  and its approximation 

x(t)

0 ttk+2tk+1tkt2t1t0
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This signal can be approximated, in the time interval [ )∞,t0  as a staircase 
function consisting of rectangles with heights ( )ktx  and identical width ε, where 
 
 ,,,ktt kk 2101 =−= +ε . 
 
Using the rectangular pulse function, depicted in Fig.1.9 and specified by 
equation (1.15), we describe k-th rectangle by expression 
 
  ( ) ( )kk tttx −εΔε  
 
where ( ktt )−εΔε  is a shifted by  function kt ( )tεΔε  (see Fig.1.14). 

  Fig. 1.14. Signal ( )tεΔε  shifted by  kt

1 

tk+1 tk 0 t 

( )ktt −εΔε

 
Hence, the step approximation of the function ( )tx  is 
 

 . (1.25) ( ) ( )k
k

k tttx −∑
∞

=0
εΔε

 
If 0→ε  the step approximation becomes the actual signal ( )tx , ( ) ( )tt δΔε → , 
and the sum (1.25) becomes an integral as follows 
 

 . (1.26) ( ) ( ) ( ) 0
0

d tttxtx
t

>−= ∫
∞

ττδτ

 
Letting −∞→0t  we have 
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 . (1.27) ( ) ( ) ( )∫
∞

∞−

−= ττδτ dtxtx

 
If we consider the signal  for a positive t only, then ( )tx
 

 . (1.28) ( ) ( ) ( )∫
∞

−=
0

dττδτ txtx

 
Furthermore, the upper limit of integration can be replaced by t because 
( ) 0=−τδ t  for t>τ   

 

 . (1.29) ( ) ( ) ( )∫ −=
t

txtx
0

dττδτ

 
Expression on the right hand side of (1.27) is known as the convolution integral 
formula. The convolution will be discussed in detail in Section 1.8. 
 
 
1.5.2. Discrete signal representation 
 
 Let us consider an example of a discrete signal shown in Fig.1.15. This signal 
can be represented by the weighted sum of shifted unit samples 
 
 ( ) ( ) ( ) ( ) ( )23121 −δ+−δ+δ++δ−= nnnnnx  (1.30) 
 

3
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0 1 2 3 n-2 -1
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x(n)

 Fig. 1.15. An example of a discrete signal 
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Expression (1.30) can be rewritten in the form 
 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) .knkx

nxnxnxnxnx

k
∑
−=

−=

=−+−+++−=
2

1

2211011

δ

δδδδ
 

 
Generalizing this result we obtain the following expression for any discrete 
signal 
 

 . (1.31) ( ) ( ) ( )∑
∞

−∞=

−=
k

knkxnx δ

 
If we consider the signal  for a positive n only, then ( )nx
 

  . ( ) ( ) ( )knkxnx
k

−= ∑
∞

=

δ
0

 
Furthermore, the upper limit of summation can be replaced by n because 
( ) 0=− knδ  for . nk >

The expression on the right hand side of (1.31) is known as the convolution 
summation formula. 
 
 
1.6. Classification of systems 
 
1.6.1. Introduction 
 
 A system is a mathematical mapping that transforms the input signal into the 
output signal. Thus, a system is a process in which one signal is transformed into 
another signal. Usually, the physical system is made as an interconnection of 
some components. 
 A system is called continuous-time if both input signal and output signal are 
continuous-time signals (see Fig.1.16a). A system is called discrete-time if both 
input signal and output signal are discrete-time signals (see Fig.1.16b). 

(b)(a)

y(n)x(n)x(t) y(t)
f (⋅)f (⋅)

  Fig. 1.16. Examples of continuous-time and discrete-time systems 
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The relationship between the input and output signals can be expressed in terms 
of a function, as a set of equations or as a set of all possible inputs and outputs 
summarized in a table. 
 For example a continuous-time system can be specified by the formula 
 

  ( ) ( )∫=
t

xkty
0

dττ

 
and a discrete-time system can be specified by the formula 
 
 ( ) ( ) ( )

2
1−+= nxnxny . 

 
 
1.6.2. System properties 
 
 In this section we will study some fundamental properties of both continuous-
time and discrete-time systems. 
 
Additivity 
 
A system is said to be additive if the response due to a sum of inputs is equal to 
the sum of the responses due to each of the inputs acting alone, i.e.: 
 
 ( ) ( ) ( ))()()()( 2121 txftxftxtxf +=+  
 
or 
 
 ( ) ( ) ( ))()()()( 2121 nxfnxfnxnxf +=+ . 
 
Homogeneity 
 
A system is said to be homogenous if multiplying the input by a constant results 
in multiplying the output by the same constant, i.e.: 
 
 ( ) ( ))()( txkftkxf =  
 
or 
 
 ( ) ( ))()( nxkfnkxf = . 
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Linearity 
 
A system is said to be linear if it is both additive and homogeneous, i.e.: 
 
 ( ) ( )( ) ( ) ( ))()( 2221112211 txfktxfktxktxkf +=+  
 
or 
 
 ( ) ( )( ) ( ) ( ))()( 2221112211 nxfknxfknxknxkf +=+ . 
 
A system which is not linear is said to be nonlinear. 
 
Example 1.1 
 
Let us consider the continuous-time system described by the equation 
 

  ( ) ( )∫=
t

xcty
0

dττ

 
where c is a constant. Let ( )ty1  and ( )ty2  be the responses of the system due to 
the input  and , respectively, that is: ( )tx1 ( )tx2

 

  ( ) ( )∫=
t

xcty
0

11 dττ

 

 . ( ) ( )∫=
t

xcty
0

22 dττ

 
The response of this system due to the input ( ) ( ) ( )txktxktx 2211 +=  is 
 

  
( ) ( ) ( )

( ) ( ) ( ) ( ) .tyktykxckxck

xkxkcxcty

t t

tt

2211
0 0

2211

0
2211

0

dd

d)()(d

+=+=

=+==

∫ ∫

∫∫

ττττ

τττττ

 
According to the foregoing relationship the system is linear. 
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Example 1.2 
 
Consider the discrete-time system specified by the equation 
 
 ( ) ( ) ( )253 −−= nxnxny . 
 
The responses of this system to the inputs ( )nx1  and ( )nx2  are: 
 
 ( ) ( ) ( )253 111 −−= nxnxny  
 
 ( ) ( ) ( )253 222 −−= nxnxny . 
 
The response of the system to the input ( ) ( ) ( )nxknxknx 2211 +=  is 
 

 
( ) ( ) ( )( ) ( ) ( )( )

( ) (
( ) ( ) .nyknyk

nxnxknxnxk
nxknxknxknxkny

2211

222111

22112211

)2(5)(3)2(5)(3
2253

+=
=−−+−−=
=−+−−+=

)  

 
Thus, the system is linear. 
 
Example 1.3  
 
Consider a continuous-time system described by the equation 
 
 ( ) ( )2)(50 tx.ty = . 
 
Let  and  be the responses to the inputs ( )ty1 ( )ty2 ( )tx1  and ( )tx2 , respectively, 
i.e.: 
 

 ( ) ( )2
11 )(50 tx.ty =  

 

 ( ) ( )2
22 )(50 tx.ty = . 

 
The response ( )ty  of this system due to the input  
 
 ( ) ( ) ( )txktxktx 2211 +=  
 

is 
 

 ( ) ( ) ( ) ( )
( ) ( ) .txtxkk

txk.txk.txktxk.ty

2121

2
2

2
2

2
1

2
1

2
2211 )(50)(50)()(50

+
++=+=
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Since the expression on the right hand side is different than 
 
 ( ) ( ) ( ) ( )2

22
2

112211 )(50)(50 tx.ktx.ktyktyk +=+  
 
we conclude that the system is nonlinear. 
 
Example 1.4 
 
The system shown in Fig.1.17, including an ideal operational amplifier, is 
specified by the function ( )inout vfv =  represented by the plot shown in Fig.1.18. 

vin R1

R2

vout

 Fig. 1.17. System for Example 1.4 

vin 

vout 

β
1slope =

0 Esatβ  -Esatβ  

-Esat 

Esat 

21

1

RR
R
+

=β

 Fig. 1.18. Representation of the system shown in Fig. 1.17 
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Note that the response of this system to βsatin Ev >  is satout Ev = . Hence, for 
βsatin Ev >  and  the response of the system to the input  is 

. 
1>k inkv

satsatout kEEv ≠=
For this reason the system is not homogeneous and, the more so it is not linear. 
However, if  belongs to the interval inv [ ]ββ satsat E,E− , then the system is 
described by equation 
 

 inout vv
β
1

= . 

 
In such a case the response of the system to the input  will be  as long as inkv outkv

ββ satinsat EkvE <<− . Therefore, under this restriction the system can be 
considered as homogeneous. Furthermore, for the signals ( )1inv  and  such 
that , , and 

( )2inv
( )1inv ( )2inv ( ) ( )21 inin vv +  belong to the interval [ ]ββ satsat E,E−  the 

system is additive. According to the foregoing discussion, for a restricted range 
of input, the system can be considered as linear. 
 
Time invariance 
 
 Let  be the response of a continuous-time system to an input . The 
system is said to be time-invariant if an input signal 

( )ty ( )tx
( )htx −  causes an output 

 for all t and arbitrary h. This property states that a shift in time of an 
input signal results in the same time shift in the output signal. 
( hty − )

 A system which is linear and time-invariant is known as a linear time-
invariant or LTI system. A system which is not time-invariant is said to be time-
varying. 
 
Example 1.5 
 
Let us consider the system specified by the equation 
 
 ( ) ( ) ( )32 −−= txtxty . 
 
The response of this system to the input ( )htx −  is 
 
 ( ) ( )32 −−−− htxhtx  
 
and equals ( hty )− . Thus, the system is time-invariant. 
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Example 1.6 
 
The system described by the equation 
 
 ( ) ( ) ( )α+ω= ttxty 0cos3  
 
is not time invariant because generally 
 
 ( ) ( ) ( ) ( )αωαω +−−≠+− )(cos3cos3 00 hthtxthtx . 
 
 A similar property, called shift-invariance (or time-invariance), can be 
formulated for discrete-time systems. 
 Let  be the response of a discrete-time system due to an input . The 
system is said to be shift-invariant (or time-invariant) if an input signal  
causes an output  for all n and arbitrary integer N. A discrete-time 
system which is both linear and shift-invariant is known as a linear shift-invariant 
(LSI) or a linear time-invariant (LTI) system. 

( )ny ( )nx
( )Nnx −

( Nny − )

 
Example 1.7 
 
Consider the discrete-time system specified by the equation 
 

 ( ) ( ) ( ) ( )32 )(5)(2 nxnxnxny ++= . 
 
The response of this system due to the input ( )Nnx −  is 
 

 ( ) ( ) ( )32 )(5)(2 NnxNnxNnx −+−+−  
 
and is equal to . Thus, the system is time-invariant. However, this 
system is nonlinear and consequently it is not an LTI system. 

( Nny − )

 
Instantaneousness 
 
A continuous-time system is said to be instantaneous if the output in this system 
at any instant of time depends on the input at that instant only. Otherwise, the 
system is called non-instantaneous. 
 
Example 1.8 
 
A system specified by the equation 
 

  ( ) ( )∫=
t

xty
0

dττ
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is non-instantaneous because its response at instant t depends on all time from 0 
to t. 
 Since the responses of non-instantaneous systems depend on previous instants 
they are said to have a memory. Consequently, instantaneous systems are termed 
memoryless systems. 
 Similar properties hold for discrete-time systems. A discrete-time system is 
said to be instantaneous if the output of this system at any n depends on the input 
at that n only. Otherwise the system is said to be non-instantaneous. 
 
Example 1.9 
 
The discrete-time system specified by equation  
 
 ( ) ( ) ( )12 −+= nxnxny  
 
is non-instantaneous because its response at n depends on the previous input at 

. 1−n
 
Example 1.10 
 
The discrete-time system described by the equation 
 

 ( ) ( )3)(5 nxny =  
 
is instantaneous. 
 
Causality 
 
 A continuous-time system is said to be causal if the response of this system, at 
any instant of time , depends only on the input up to time . 0t 0t
 A discrete-time system is said to be causal if the response of this system at 
any  depends on the input up to 0n 0nn = . 
 A general property of causal system is that changes in the output cannot 
precede changes in the input. 
 
Example 1.11 
 
The system described by the equation 
 
 ( ) ( ) ( )1502 ++= nx.nxny  
 
is noncausal because the output at 0nn =  depends on the input at 10 +n . 
In this book we will study the causal systems only. 
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Stability 
 
In many applications it is required for a system to produce a bounded output 
whenever the input is bounded. A system with this property is said to be stable in 
the bounded input-bounded output sense. 
 To be technical, we consider a continuous-time system with input  and 
output . By definition, the system is said to be stable if any bounded input 
signal , i.e. such that 

( )tx
( )ty
( )tx ( ) xKtx <  for all t, produces a bounded output signal 

, i.e. such that ( )ty ( ) yKty <  for all t, where  and  are positive constants. xK yK
 The above defined stability is known as bounded-input bounded-output (BIBO) 
stability. 
 
Example 1.12 
 
Let us consider a system specified by the equation 
 

  ( ) ( )tx
ty

−
=

1
1 . 

 
Using the bounded input  
 

  ( ) ( ) ( )tuetx t−−= 1  
 
we obtain unbounded output ( )ty . Thus, the system is not BIBO stable. 
 Similarly as for continuous systems, we define BIBO stability for discrete-time 
systems. A discrete system is said to be stable if any bounded input signal , 
i.e. such that 

( )nx
( ) xKnx <  for all n, produces a bounded output signal ( )ny , i.e. 

such that ( ) yKny <  for all n, where  and  are positive numbers. xK yK
 
 
1.7. Response of LTI continuous-time and discrete-time 

systems 
 
1.7.1. Response of continuous-time LTI systems 
 
 Let us consider an LTI system whose response due to the unit impulse ( )tδ  is 
given. The response will be labeled ( )th  and termed the unit impulse response. 
This characterizes the system and plays a very important role in system theory. 
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 Let an input signal  be applied to the system. In Section 1.5 it is shown 
that the signal  can be approximated by a step function (1.25) repeated below 
for the reader’s convenience 

( )tx
( )tx

 

 . (1.32) ( ) ( )k
k

k tttx −∑
∞

=0
εΔε

 
Let  be the response of the system to the rectangular pulse ( )thΔ ( )tεΔ . Since the 
system is LTI, its response due to the signal (1.32) is 
 

 . (1.33) ( ) ( )k
k

k tthtx −∑
∞

=0
ε Δ

 
Letting 0→ε  we have: ( ) ( )tt δΔε → , consequently ( ) ( )thth →Δ , and the sum 
becomes integral. Hence, expression (1.33) becomes the response  to the 
input  and assumes the form 

( )ty
( )tx

 

 . (1.34) ( ) ( ) ( ) τττ d
0

∫
∞

−=
t

thxty

 
Generally,  and we may write −∞→0t
 

 . (1.35) ( ) ( ) ( ) τττ d∫
∞

∞−

−= thxty

 
We recognize the expression on the right hand side of (1.35) as the convolution 
integral formula. 
If  for , then ( ) 0=tx 0<t
 

 . (1.36) ( ) ( ) ( ) τττ d
0
∫
∞

−= thxty

 
Furthermore, for any causal system ( ) 0=−τth  for τ<t  because  is the 
response to 

( )th
( )tδ  which appears at 0=t  and ( )τ−th , where 0<−τt , is the 

response which would precede the input. Hence, we have 
 

 . (1.37) ( ) ( ) ( ) τττ d
0

−= ∫ thxty
t
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1.7.2. Response of discrete-time LTI systems 
 
 Let us consider a discrete-time LTI system in which the response due to the unit 
sample ( )nδ  is given. The response will be labeled ( )nh  and termed the unit 
sample response or the unit pulse response. This characterizes the system and 
plays a very important role in system theory. Section 1.5 shows that the signal 

 can be expressed in the form (1.31) repeated below  ( )nx
 

 . (1.38) ( ) ( ) ( )∑
∞

−∞=

−=
k

knkxnx δ

 
Since the system is LTI, its response due to ( ) ( )knkx −δ  is ( ) ( )knhkx −  and the 
response due to  is ( )nx
 

 . (1.39) ( ) ( ) ( )∑
∞

−∞=

−=
k

knhkxny

 
We recognize expression (1.39) as the convolution summation formula. It 
constitutes the sum of responses of the system to all the terms of the signal 
(1.38). 
 
Example 1.13 
 
Let us consider a discrete LTI system whose response to a unit sample is  as 
shown in Fig.1.19. 

( )nh

 

 

1

h(n)

n
0 1-2

2

2

-1

3-1

 
 
 Fig. 1.19. Unit sample response of a discrete LTI system 
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We wish to determine the response of this system to the signal ( )nx depicted in 
Fig.1.20. 
 

 

x(n)

n
0 1

1

-2

2

2

-1

3-1

 
 
 Fig. 1.20. Input signal ( )nx  
 
The signal  can be represented using expression (1.38) ( )nx
 

 . ( ) ( ) ( ) ( ) ( ) ( )2211 −+−++−=−= ∑
∞

−∞=

nnnknkxnx
k

δδδδ

 
Hence, we compute the responses of the system due to the signals 

( )1+− nδ , ( )1−δ n , and ( 22 −n )δ  ( see Fig.1.21). 
 

 

 -δ(n+1) 

n
0 1 -1 
-1 
-2 

(a) -h(n+1)

n
0 1-1
-1
-2

-2

(b)
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δ(n-1)

n
0 1

1

2
(c)

 

h(n-1)

n
0 1 32

2

1

(d)

 

 

2δ(n-2)

n
0 1

1

2

2

(e)

 

2h(n-2)

n
0 31

1

2

4

3

2

(f)

 
Fig. 1.21. Response of the system due to signals ( )1+− nδ , ( )1−nδ , and 

( )22 −nδ  
 
The response  given by equation ( )ny
 
 ( ) ( ) ( ) ( )2211 −+−++−= nhnhnhny  
 
is shown in Fig.1.22. 

 

y(n)

n 0 1

1

-2

2

2
-1

3

-1

-2

-3 3

4

4

5

 

 Fig. 1.22. Response ( )ny  of the system considered in Example 1.13 
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The method applied in the above example requires computing the response of the 
system due to each term of the signal representation (1.38) and summarizing the 
results. An alternative approach is to consider the graphical interpretation of the 
convolution summation as it will be explained in Section 1.8. 
 
 
1.8. Convolution 
 
 Section 1.7 shows that the convolution plays a very important role in the 
analysis and description of both the continuous-time and discrete-time LTI 
systems. Therefore, in this section we will discuss some properties of the 
convolution and techniques of performing convolution. 
 Generally, convolution is a mathematical operation applied to two functions 
producing a third function. If the two functions are continuous-time functions we 
refer to convolution as continuous convolution. If they are discrete-time 
functions we refer to convolution as discrete convolution. 
 
1.8.1. Continuous convolution 
 
 Let us consider the functions ( )tf1  and ( )tf 2 . The continuous bilateral 
convolution or simply continuous convolution of ( )tf1  and ( )tf 2  written as  
 
 ( ) ( ) ( )tftftf 21 ∗=  
 
is given by 
 

  (1.40) ( ) ( ) ( )∫
∞

∞−

−= τττ d21 tfftf

 
where τ is a dummy integration variable. Continuous convolution is 
commutative, i.e. 
 
 ( ) ( ) ( ) ( )tftftftf 1221 ∗=∗ . (1.41) 
 
To prove this property we can use the definition formula 
 

  ( ) ( ) ( ) ( ) τττ d2121 ∫
∞

∞−

−=∗ tfftftf

 
and perform a change of variables by letting vt =−τ . Then vt −=τ , vdd −=τ , 

∞→v  as −∞→τ , and −∞→v  as ∞→τ . As a result we obtain 
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 . ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tftfvvtfvfvvfvtftftf 12122121 dd ∗=−=−−=∗ ∫∫
∞

∞−

−∞

∞

 
Hence the property. 
Applying this property to the result of Section 1.7 we conclude that the response 
of an LTI system, specified by the unit impulse response ( )th , due to an input 

 can be determined either using equation (1.35) repeated below ( )tx
 

  (1.42) ( ) ( ) ( ) τττ d∫
∞

∞−

−= thxty

 
or using the equation 
 

 . (1.43) ( ) ( ) ( ) τττ d∫
∞

∞−

−= txhty

 
Thus, for computing  we can apply this expression which leads to simpler 
integration. 

( )ty

 In Section 1.6.2 we defined BIBO stability of continuous-time systems. We 
now relate this property to the impulse response ( )th  of LTI systems with a 
bounded input , i.e. such that ( )tx ( ) xKtx <  for all t. Using the convolution 
equation (1.43) we obtain 
 

  ( ) ( ) ( ) ( ) ( ) ( ) ττττττττ ddd ∫∫∫
∞

∞−

∞

∞−

∞

∞−

≤−≤−= hKtxhtxhty x . 

 
Hence, if 
 

  ( ) ∞<<∫
∞

∞−
hKh ττ d  

 
then the system is BIBO stable. Thus, we have proved that a sufficient condition 
which guarantees BIBO stability of an LTI system is that its impulse response is 
absolutely integrable. 
 As a matter of fact, this condition is also necessary, which can be 
demonstrated as follows. Suppose that the impulse response were not absolutely 
integrable, but the system were BIBO stable. Let us consider the input such that 
for a fixed t ( ) 1−=−τtx  if ( ) 0<τh  and ( ) 1=−τtx  if ( ) 0>τh . Then the output  
is 
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  ( ) ( ) ττ d∫
∞

∞−

= hty  

 
which is not bounded by the assumption. This is a contradiction showing that the 
condition is also necessary. 
 Note that for an LTI causal system ( ) 0=th  for 0<t  and the criterion for 
BIBO stability reduces to 
 

  ( ) ∞<<∫
∞

hKh ττ d
0

. 

 
Graphical interpretation of continuous convolution 
 
 The convolution operation can be performed in four steps: folding, translating, 
multiplying, and integrating. 
We explain the operations via an example. Let us consider the signals and 

 as shown in Fig.1.23 
( )tf1

( )tf 2

 Fig. 1.23. Signals ( )tf1 and ( )tf 2  

tt

1

3 40

f2(t)

1

f1(t)

22

3

10 3 4 5

(b)(a)

 
We wish to determine 
 

  (1.44) ( ) ( ) ( ) ( ) ( ) τττ d2121 −=∗= ∫
∞

∞−

tfftftftf

 
by its graphical interpretation. 
Since  for , the lower limit of integration can be replaced by 0 ( ) 01 =tf 0<t
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 . ( ) ( ) ( ) τττ d2
0

1 −= ∫
∞

tfftf

 
At first we consider the signals f1(τ) and f2(τ) ( see Fig.1.24 ). 

τ τ 

1 

3 4 0

f2(τ) 

1 

f1(τ)

2 2 

3 

1 0 3 4 5 

(b) (a) 

  Fig. 1.24. Signals f1(τ) and f2(τ) 
 
Now we take into account the signal f2(-τ). It is obtained by folding (reflecting) 
f2(τ) about the line τ = 0 as depicted in Fig.1.25 

-1 31 2 τ0

f2(-τ) = g(τ)

-2

3

-5 -3-4

 Fig. 1.25. Signal ( ) ( )ττ −= 2fg  obtained by folding signal f2(τ) 
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The next step is creating ( )τ−tf2  for some fixed value of t, say . Let us 
denote 

4=t
( ) ( )ττ −= 2fg , then ( ) ( ) ( )tg)t(ftf −=−−=− τττ 22 . Hence, the signal 

( )τ−tf2  is obtained by translation (shifting) the signal g(τ) shown in Fig.1.25 by 
 (see Fig.1.26). 4=t

t=4 

-1 3 1 2 τ 0

f2(t-τ) 

-2 

3 

-3 4 

  Fig. 1.26. Signal  obtained by translating signal g(τ) by  ( τ−tf 2 ) 4=t
 
Now we perform multiplication ( ) ( )ττ −tff 21  for 4=t . The result is shown in 
Fig.1.27 

t=4 

3 1 2 τ 0

f1(τ) f2(t-τ) 

3 

4 

 Fig. 1.27. Product of signals ( )τ1f  and ( )τ−tf2  
 
The last step is integration 
 

 . ( ) ( ) ( ) ( ) ( ) 57d4d44
4

0
212

0
1 .fffff =−=−= ∫∫

∞

ττττττ
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Thus, the convolution at t=4 is equal to 7.5 and this is a point on the curve . ( )tf
Selecting another t and repeating the above procedure we obtain the 
corresponding point of the characteristic ( )tf . This is shown in Figs.1.28-1.33 
for 653210 ====== t,t,t,t,t,t . 

 Fig. 1.28. Finding the convolution ( ) ( )tftf 21 ∗  at 0=t  

t=0 

τ τ 

3 

-2 -1 0

f1(τ) f2(t-τ) 

1 

f2(-τ)

2 -2 1 -1 0-3 -4-5 

(b) (a) 

f(t)=0 

1 1 

τ τ 

3 

-1 0

f1(τ) f2(t-τ) 

1 

f2(t-τ) 

2 -1 2 0 1-2 -3 -4 

(b) (a) 

f(t)=0.5 

t=1 

  Fig. 1.29. Finding the convolution ( ) ( )tftf 21 ∗  at 1=t  

t=2 

2 2

τ τ

3 

0 1

f1(τ) f2(t-τ)

2

f2(t-τ)

3 1 3 0 2-1 -2 -3 

(b) (a) 

f(t)=2 

  Fig. 1.30. Finding the convolution ( ) ( )tftf 21 ∗  at 2=t  
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t=3 

4 

3

τ τ

3 

0 1

f1(τ) f2(t-τ) 

2

f2 (t-τ) 

3 1 3 0 2-1 -2 -3 

(b)(a) 

f(t)=4.5 

 

  Fig. 1.31. Finding the convolution ( ) ( )tftf 21 ∗  at 4=t  

t=5 

5 6 4 τ

3 

f2 (t-τ) 

3 0 2 1-1 

(b) (a) 

5 6 

3

τ 0 2

f1 (τ) f2 (t-τ)

43 1

f(t)=10.5 

  Fig. 1.32. Finding the convolution ( ) ( )tftf 21 ∗  at 5=t  

t=6 

5 6 4 τ

3 

f2 (t-τ) 

3 0 2 1

(b) (a) 

5 6 

3

τ 0 2

f1 (τ) f2 (t-τ)

43 1

f(t)=10.5 

  Fig. 1.33. Finding the convolution ( ) ( )tftf 21 ∗  at 6=t  
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Note that for  the convolution 5>t ( )tf  is constant and equal to 10.5. The 
results of the computation are summarized in Table 1.1. 
 
 

t negative 0 1 2 3 4 5 greater than 5 

f(t) 0 0 0.5 2 4.5 7.5 10.5 10.5 

 
  Table 1.1. The results of computation for Example 1.13 
 
The plot of ( )tf  is shown in Fig.1.34. 

-2 -1 t0 654321

2

4

6

8

10

12

f(t)

 Fig. 1.34. Plot of the convolution ( ) ( ) ( )tftftf 21 ∗=  
 
 The graphical method, described above, is effective if multiplication and 
integration of the signals can be easily performed. Generally, these operations 
need to be accomplished using a numerical approach. To find the convolution 
numerically we take into account an approximation of the convolution integral, 
similarly as in Section 1.7. We replace the integration by summation and the 
convolution is approximately given by 
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  (1.45) ( ) ( ) ( )k
k

k ttftftf −ε≅ ∑
∞

−∞=
21

 
where we assume that ε is sufficiently small. 
To illustrate the above procedure we consider the following example. 
 
Example 1.14 
 
Let us consider signals  and ( )tf1 ( )tf 2  shown in Figs. 1.35 and 1.36. 

  Fig. 1.35. Signal   Fig. 1.36. Signal ( )tf1 ( )tf 2  

0 0.5 tt 1

1

0

1

1

f1 (t) f2 (t)

 
We wish to compute the convolution of ( )tf1  and ( )tf 2  at 50.t =  using the 
approximate formula (1.45). We choose 050.=ε  and tabulate the values 

ε⋅= ktk , ( )εkf1 , and ( )εk.f −502  where 1010 ,,,k = . Next we compute the 
product ( ) ( )εε ktfkf −21  at any k. Finally, we add together the results and 
multiply by 05.0=ε . Note that the procedure is terminated at 10=k   
because for  

( )50.tk =
50.tk > 050 <− kt.  holds, which implies ( ) 0502 =− kt.f . The 

results of the computation process are summarized in Table 1.2. 
 

k 0 1 2 3 4 5 6 7 8 9 10 

tk 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

f1(tk) 0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

f2(0.5-tk) 1 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

f1(tk)f2(0.5-tk) 0 0.055 0.120 0.194 0.280 0.374 0.480 0.594 0.720 0.854 1.00 

 
  Table 1.2. The results of computation for Example 1.14 
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We add together all numbers of the last row finding 4.670 and multiply by 
050.=ε . As a result we obtain ( ) 233050 ..f ≅  whereas the correct value is 

. To obtain more accurate values smaller ε should be chosen. ( ) 208050 ..f =
 
 
1.8.2. Discrete convolution 
 
Definition  
 
Let us consider the discrete-time functions ( )nf1  and ( )nf 2 . The discrete 
convolution of  and ( )nf1 ( )nf 2  written as 
 
 ( ) ( ) ( )nfnfnf 21 ∗=  
 
is given by  
 

 . (1.46) ( ) ( ) ( )knfkfnf
k

−= ∑
∞

−∞=
21

 
Discrete convolution is commutative, i.e. 
 
 ( ) ( ) ( ) ( )nfnfnfnf 1221 ∗=∗ . 
 
To prove this property we apply formula (1.46) 
 

  ( ) ( ) ( ) ( )knfkfnfnf
k

−=∗ ∑
∞

−∞=
2121

 
and perform a change of variables by letting mkn =− , then mnk −= ,  
as , and  as 

∞→m
−∞→k −∞→m ∞→k . Hence, we obtain 

 

 . ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )nfnfmnfmfmfmnfnfnf
mm

12122121 ∗=−=−=∗ ∑∑
∞

−∞=

−∞

∞=

 
Applying this property to the results of Section 1.7 we state that the response of 
an LTI system specified by the unit sample response ( )nh , due to an input  
can be either determined using equation (1.38) repeated below 

( )nx
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  ( ) ( ) ( )∑
∞

−∞=

−=
k

knhkxny

 
or using the equation 
 

 . (1.47) ( ) ( ) ( )∑
∞

−∞=

−=
k

knxkhny

 
 In Section 1.6.2 we defined BIBO stability of discrete-time systems. We now 
relate this property to the unit pulse response ( )nh  on LTI systems with a 
bounded input ( )nx , i.e. such that ( ) xKnx <  for all n. Using equation (1.47) 
we obtain 
 

 
( ) ( ) ( ) ( ) ( )

( )∑

∑∑
∞

−∞=

∞

−∞=

∞

−∞=

≤

≤−≤−=

k
x

kk

khK

knxkhknxkhny
 

 
Hence, if 
 

 ( ) ∞<<∑
∞

−∞=
h

k

Kkh  

 
then the system is BIBO stable. Thus, we have proved that a sufficient condition 
for BIBO stability of an LTI discrete system is that its unit pulse response is 
absolutely summable. 
 It can be demonstrated that this condition is also necessary. Suppose that the 
unit pulse response were not absolutely summable, but the system were BIBO 
stable. Let us consider the input such that for a fixed n ( ) 1−=− knx  if  
and  if . Then, the output 

( ) 0<kh
( ) 1=− knx ( ) 0>kh

 

  ( ) ( )∑
∞

−∞=

=
k

khny  

 
is not bounded by the assumption. This is a contradiction showing that the 
condition is also necessary. 
 Note that for a causal LTI system the criterion for BIBO stability reduces to  
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  ( ) ∞<<∑
∞

=
h

k

Kkh
0

. 

 
Graphical interpretation of discrete convolution 
 
 Similarly as in the case of continuous convolution the discrete convolution 
can be performed in four steps: folding, translating, multiplying, and adding. 
 
We will explain these operations via an example. 
 
Example 1.15 
 
Let us consider the convolution of the signals shown in Fig.1.37. 
 

 

f1(n)

n
0 1

1

2 3 4

2

3

f2(n)

n
0 31

1

42
 

 
  Fig. 1.37. Discrete signals ( )nf1  and ( )nf 2  
 
The convolution is given by (1.46) repeated below 
 

 . (1.48) ( ) ( ) ( )∑
∞

−∞=

−=
k

knfkfnf 21

 
We create the signal  by folding the signal ( kf −2 ) ( )kf 2  about the line  
(see Fig. 1.38). 

0=k
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1

2

3
f2(-k)

k
0-3 1-1 2-2

 
 Fig. 1.38. Signal ( )kf −2  obtained by folding signal ( )kf 2  
 

The next step is translating of ( )kf −2 for some fixed value of n, say . It is 
shown in Fig.1.39  

2=n

  

f2(n-k)

k0 1-1

2

1

3

2 3

n = 2

 
 Fig. 1.39. Signal  obtained by translating signal ( knf −2 ) ( )kf −2  by  2=n
 
Now we perform multiplication ( ) ( )knfkf −21 , where 2=n  (see Fig.1.40) 
 

  

f1(k) f2(n-k)

k0 1

2

1

3

2 3

n = 2

 
 Fig. 1.40. Product of signals ( )kf1  and ( )knf −2  for 2=n  
 
Finally, the summation is made 
 

  ( ) ( ) ( )knfkfnf
k

−= ∑
∞

−∞=
21

 

where . 2=n
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In this way we obtain ( ) 6=nf  for 2=n . Selecting another n and repeating the 
above procedure we determine corresponding ( )nf . Fig.1.41 shows  
for  and Fig.1.42 shows the corresponding products . 

( )knf −2

4310 ,,,n = ( ) ( )knfkf −21

f2(n-k) 

k 0 1 -1 

2 

1 

3 

2 -2 

n = 1 

(b)

f2(n-k)

k0 1-1

2

1

3

2-2-3

n = 0

(a)

  Fig. 1.41. Plot of ( )knf −2  for 4310 ,,,n =  

f2(n-k)

k
0 1 4

2

1

3

2 3

n = 4

(d)

f2(n-k)

k
0 1-1

2

1

3

2 3

n = 3

(c)

f1(k) f2(n-k)

k0 1-1

2

1

3 n = 0

(a)

f1(k) f2(n-k)

k0 1-1

2

1

3

2

n = 1

(b)
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f1(k) f2(n-k)

k
0 1 4

2

1

3

2 3

n = 4

(d)

f1(k) f2(n-k)

k
0 1-1

2

1

3

2 3

n = 3

(c)

  Fig. 1.42. Products of ( )kf1  and ( )knf −2  for n 4310 ,,,=  
 
On the basis of Fig.1.42 we obtain ( ) ( ) ( ) ( ) 14335130 ==== f,f,f,f . It is 
obvious that ( ) 0=nf  for  and . The convolution 0<n 4>n ( )nf  is shown in 
Fig.1.43. 
 

  

f(n)

n0 31

1

2

4

3

2

5

6

4 5 6-1
 

 
  Fig. 1.43. Plot of the convolution ( ) ( ) ( )nfnfnf 21 ∗=  
 
Note 
 
The discrete convolution can be also found by direct evaluating the sum given by 
(1.46). To illustrate this approach we consider again the discrete signals shown in 
Fig.1.37. Using equation (1.46) we obtain: 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) 12231404

31221303
60211202
51201101

32211000

212121

212121

212121

212121

212121

=++=
=++=
=++=
=−++=
=−+−+=

fffffff
fffffff
fffffff
fffffff

fffffff

 

 
Furthermore, it is obvious that ( ) 0=nf  for 0<n  and for . 4>n
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