
 
 
 
 
 
 

9. The Fourier Transform 
 
 
 
 
9.1. Introduction 
 
 Up to this point we considered periodic signals. The signals can be expanded 
in Fourier series consisting of infinite number of harmonics. In this section we 
will study situations where the signals are not periodic. To extend the Fourier 
method we introduce the Fourier transform. 
 Let us consider a finite duration signal ( )tx  defined for every t in the interval 

 and equal to zero outside this interval as depicted in Fig.9.1. [ ββ− , ]
x(t)

0 β-β t
  Fig. 9.1. A finite duration signal 
 
Since the signal  is not periodic, it cannot be expanded into Fourier series. 
However, the Fourier series method can be used to represent 

( )tx
( )tx  in any interval 

[ ]γγ ,− , where βγ ≥ . For this purpose we create a periodic signal  with 
period 

( )tx~

γ2  which is identical to ( )tx  for every t in γγ <<− t  (see Fig.9.2). 

β γ 2γ -2γ -γ -β t 

( )tx~  

  Fig. 9.2. A periodic signal that is equivalent to the signal of Figure 9.1 
within the interval [ ]γγ ,−  



 187

Since  is periodic with period ( )tx~ γ2=T , it can be expanded in the exponential 
Fourier series. In the interval [ ]γγ ,− , the Fourier series expansion is . Thus,  ( )tx
 

   (9.1) ( ) γγω <<−= ∑
∞

−∞=

tc~tx
n

tn
n

0je

 
holds where 
 

  
T
πω 2

0 =  

 
and the Fourier coefficients  are uniquely determined by nc~ ( )tx  
 

  ( )∫
−

−=
2

2

j de1 0

T

T

tn
n ttx

T
c~ ω . (9.2) 

 
Let the integral (9.2) be denoted by ( )0j ωnX , i.e. 
 

  ( ) ( )∫
−

−=
2

2

j
0 de 0

T

T

tn ttxjnX ωω , (9.3) 

 
then 
 

  ( ) ( 0
0

0 j
2

j1 ω
π
ωω nXnX

T
c~n == ) . (9.4) 

 
Inserting (9.4) into (9.1) yields 
 

  ( ) ( ) γγωω
π

ω <<−= ∑
∞

−∞=

tjnXtx
n

tn
0

j
0

0e
2
1 . (9.5) 

 
It should be stressed that the two sides of equation (9.5) are equal for γγ <<− t . 
Outside this interval  is zero and differs from the periodic signal specified by 
the right hand side. 

( )tx

Observe that as ∞→γ  and consequently ∞→T  the signal ( )tx~  is the same as 
. The right hand side of (9.5) gives the sum of exponential harmonics of ( )tx
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frequencies 0ωn , where ,,,n 210 ±±= . As ∞→T , 
T
πω 2

0 =  tends to zero; 

hence, the distance between the frequencies of subsequent harmonics approaches 
zero. Thus, the discrete variable 0ωn  becomes a continuous variable ω and  
becomes dω. Consequently, the sum on the right hand side of (9.5) should be 
replaced by an integral. Thus, in the limit as 

0ω

∞→T , relationship (9.5) becomes 
 

  

( ) ( )

( ) .X

nXtx

t

n

tn

T

∫

∑
∞

∞−

∞

−∞=∞→

=

==

ωω
π

ωω
π

ω

ω

dej
2
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ejlim2
1

j

0
j

0
0

 (9.6) 

 
To find ( )ωjX , we use (9.3) repeated below 
 

  ( ) ( )∫
−

−=
2

2

j
0 dej 0

T

T

tn ttxnX ωω  

 
and assume that  ∞→T
 

  ( ) ( ) ( )∫ ∫
−

∞

∞−

−−

∞→
==

2

2

jj dedelimj 0

T

T

ttn

T
ttxttxX ωωω . (9.7) 

 
Equations: 
 

   (9.8) ( ) ( )∫
∞

∞−

−= ttxX tdej jωω

 

  ( ) ( )∫
∞

∞−

= ωω
π

ω dej
2
1 j tXtx  (9.9) 

 
constitute the Fourier transform pair. ( )ωjX  is called the Fourier transform of 
the time function , whereas ( )tx ( )tx  is the inverse Fourier transform of ( )ωjX . 
The integral on the right hand side of (9.8) is called the Fourier integral. 
 Sufficient conditions for the existence of the Fourier transform are similar to 
the Dirichlet conditions for the Fourier series. 
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They are as follows: 
(i)  must be absolutely integrable, i.e. ( )tx

 

  ( ) ∞<∫
∞

∞−

ttx d . 

 

(ii) On any finite interval ( )tx  has at most a finite number of maxima and 
minima. 

(iii) On any finite interval ( )tx  has at most a finite number of discontinuities 
and each of these discontinuities is finite. 

The conditions are sufficient but not necessary. Consequently, many useful 
signals which do not meet them can also be analyzed using the Fourier transform. 
 Let us consider the condition (i). Unfortunately, many useful signals, e.g. the 
unit step function as well as periodic functions, are not absolutely integrable. It 
can be shown that any power signal (see Section 12) which meets the conditions 
(ii) and (iii) has a Fourier transform. 
To determine the Fourier transform of a function, which is not absolutely 
integrable, we extend the idea of the Fourier transform as follows. 
 We multiply  by a factor ( )tx ( )t,cp  so that ( ) 10 =t,p  and the integral 
 

  ( ) ( ) tt,cptx d∫
∞

∞−

 

 
is convergent. For instance, the factor can be chosen as 
 

  . ( ) 0e
2

>= − c,t,cp ct

 
Next, we find the Fourier transform of ( ) ( )t,cptx . If the Fourier transform exists 
for any , then decreasing c we obtain a sequence of the Fourier transforms. 
The limit of this sequence, as , is assumed to be the Fourier transform of 

. This transform is known under the name of the Fourier transform in a limit 
sense. 

0c >
0→c

( )tx

In Section 2 we defined the Laplace transform 
 

   ( ) ( )∫
∞

−==
0

de)( ttx)s(Xtx stL

 

where ωσ j+=s  is a complex variable called the complex frequency. To find 
the relationship of the Laplace transform to the Fourier transform given by (9.8) 
we consider a signal . Then, we may write ( ) ( )tutx
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( ) ( ) ( ) ( )
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Thus, in this case we can obtain the Fourier transform from the Laplace 
transform replacing s by ωj  
 
  ( ) ( )

ωj)()()(
=

= stxtutx LF  

 
provided that each transform exists. For example if 
 
  ( ) ( ) 0e >= − a,tuKtx at  
 
then 
 

  ( )
as

KsX
+

=  

 
and 
 

  ( )
a

KX
+

=
ω

ω
j

j . 

 
Example 9.1 
 
Let us consider a rectangular pulse shown in Fig.9.3. 

2
a

2
a

−

A

0 t

x(t)

  Fig. 9.3. A rectangular pulse 
 
To find the Fourier transform of this signal, we use (9.8) 
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Thus, we have 
 

  ( )
a

a
aAX

ω

ω
ω

2
1

2
1sin

j = . (9.10) 

 
Observe that apart from the constant aA the function (9.10) has the form of the 

function 
x

xx sincsin =  where ax ω=
2
1 . The plot of this function is depicted in 

Fig.9.4. 

4π x 2π 0 π 

1 

xcsin

-π -4π -3π -2π 3π 

  Fig. 9.4. Plot of  xcsin
 
Hence, the plot of ( )ωjX  as a function of ω is as shown in Fig.9.5. 
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  Fig. 9.5. Plot of the Fourier transform of the pulse shown in Fig.9.3 
 
 
9.2. Amplitude and phase spectra 
 
 Let us consider a rectangular pulse train as shown in Fig.9.6. 

  Fig. 9.6. Rectangular pulse train 
 
The Fourier coefficients for this signal are given by 
 

a
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−
a
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a
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−
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  ( ) ∫∫
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where 
 

  
T
πω 2

0 = . 

 
Hence, we have 
 

  
an

an

T
Aac~n

0

0

2
1

2
1sin

ω

ω
=  

 
or 
 

  
an

an
AaTc~n

0

0

2
1

2
1sin

ω

ω
= . (9.11) 

 
Let us compare the Fourier transform ( )ωjX  of the rectangular pulse shown in 
Fig.9.3 (see (9.10)) and  for the rectangular pulse train shown in Fig.9.6 (see 
(9.11)). Both relationships have the same form, however, 

Tc~n

( )ωjX  is a function of 
the continuous variable ω , whereas  has values for discrete frequencies 

. Hence, the magnitude of 
Tc~n

0ωn ( )ωjX  is the envelope of the magnitudes of . Tc~n

 We examine Tc~n  as a is fixed and T changes and assumes three values: 2a, 
4a, and 8a. 
The envelope for Tc~n  does not depend on T; consequently it is the same in the 
three cases and given by 
 

  ( )
a

a
AaX

ω

ω
ω

2
1

2
1sin

j = . 
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The plot of the envelope is shown in Fig.9.7. 

  Fig. 9.7. Plot of the envelope for Tc~n  

0 

Aa 

ω 
a
π6

−
a
π4

−
a
π2

a
π4

a
π6

a
π2

−

( )ωjX

 
For  the amplitude spectrum aT 2= Tc~n  is defined at the frequencies 
 

  
a

n
a

n
T

nn πππω ===
2
22

0 . 

 
This spectrum is depicted in Fig.9.8 

0 

Aa 

ω 
a
π6

−
a
π4

−
a
π2

a
π4

a
π6

a
π2

−

Tc~n

  Fig. 9.8. The amplitude spectrum Tc~n  for aT 2=  
 

Now we consider the case where aT 4= . Then the amplitude spectrum Tc~n  is 
defined at frequencies 
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This spectrum is depicted in Fig.9.9. 

  Fig. 9.9. The amplitude spectrum Tc~n  for aT 4=  
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For  the amplitude spectrum aT 8= Tc~n  is defined at frequencies 
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The spectrum is shown in Fig.9.10. 

  Fig. 9.10. The amplitude spectrum Tc~n  for aT 8=  
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The above discussion shows that when T increases, the separation of the 
amplitude spectrum lines of  decreases. Thus, the number of harmonics in a 
given frequency interval increases. In the limit as 

Tc~n

∞→T  the distance between 
the lines tends to zero. Consequently, the discrete spectrum Tc~n  becomes the 
continuous spectrum represented by the envelope of Tc~n , i.e. by ( )ωjX . 
 Another interpretation is as follows. As T increases the distance between 
frequencies of subsequent harmonics decreases. In the limit as  this 
distance tends to zero and the amplitudes of the exponential frequencies 
represented by 

∞→T

nc~  tend to zero, because 
 

  
T

Tc~
c~ n

n =  

 
and Tc~n  is framed by ( )ωjX . 
 The above interpretation has been given for the rectangular pulse but it is 
valid in general. For an arbitrary signal ( )tx , defined in a finite time interval 

⎥⎦
⎤

⎢⎣
⎡−

22
a,a , and equal to zero outside this interval, we create a periodic signal  

with period  which is identical with 

( )ty

aT > ( )tx  for 
22
TtT

<<− . The exponential 

Fourier series coefficients  of the signal nc~ ( )ty  satisfy the relation 
 

  ( )∫
−

−=
2

2

j de 0

a

a

tn
n ttxTc~ ω . (9.12) 

 

The Fourier transform of  is ( )tx
 

  ( ) ( )∫
−

−=
2

2

j de

a

a

t ttxjX ωω . (9.13) 

 
Relationships (9.12) and (9.13) are identical in form but the former is defined for 
discrete frequencies whereas the latter for continuous frequencies. As a matter of 
fact,  equals the samples of Tc~n ( )ωjX  at 
 

  
T

nn πωω 2
0 == . 
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The magnitude ( )ωjX  will be called the continuous amplitude spectrum and 
( )(j )ωX∠  the continuous phase spectrum of a nonperiodic signal ( )tx . 

 
 
9.3. Properties of the Fourier transform 
 
 In this Section we consider a number of properties of the Fourier transform. 
Recall that a signal  and its Fourier transform ( )tx ( )ωjX  are related by the pair 
of equations: 
 

   (9.14) ( ) ( ) ( )∫
∞

∞−

−== ttxXtx tdej)( jωωF

 

  ( ) ( ) ( )∫
∞

∞−

== ωω
π

ω ω dej
2
1)j( j tXtxX1-F . (9.15) 

 
Linearity 
 
If  and  are the Fourier transforms of ( )ωj1X ( )ωj2X ( )tx1  and , 
respectively, then for arbitrary constants  and  (real or complex) the Fourier 
transform of the sum: 

( )tx2

1c 2c

 
  ( ) ( )txctxc 2211 +  (9.16) 
 
is 
 
  ( ) ( )ω+ω jj 2211 XcXc . (9.17) 
 
This property follows directly by substituting (9.16) into (9.14). 
 
Scaling 
 
If  has the Fourier transform ( )tx ( )ωjX , then for any real constant 0≠α  
 

  ( ) ⎟
⎠
⎞

⎜
⎝
⎛=
α
ω

α
α j1)( XtxF . (9.18) 

Proof 
 



 198

To prove the property we consider two cases of positive and negative values of 
. α

 
For  let 0>α tu α= . Substituting this into (9.14) yields 
 

  ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛=== ∫∫

∞

∞−

−
∞

∞−

−

α
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αα α

ω
ω j1de1de)(

jj Xuuxttxtx
utF . 

 
For  we have 0<α
 

  ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
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−
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−∞

∞

−
∞

∞−

−

α
ω

αα
αα α

ω
ω j1de1de)(

jj Xuuxttxtx
utF . 

 

Combining these two results gives the relationship (9.18). 
 Letting 1−=α , we obtain 
 
  ( ) ( )ωj)( −=− XtxF . (9.19) 
 
Thus, reversing a signal in time implicates reversing its Fourier transform. The 
scaling property states that scaling in time by a factor α corresponds to scaling in 

frequency by a factor 
α
1 . Thus, when the time scale is expanded by the factor, 

the frequency spectrum is contracted by the same factor and vice versa. It is 
illustrated in figures 9.11 and 9.12. 
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( )( ) ( )ωjXtx =F

a
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−
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0 t 

x(t) 

a
2
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  Fig. 9.11. Rectangular pulse and its frequency spectrum 
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 Fig. 9.12. Rectangular pulse with expended time scale and its frequency 
spectrum 

 
 Let us consider a situation where ( )tx  is a real function of t. Using Euler’s 
identity we obtain 
 

   

( ) ( )( )

( ) ( ) .tttxtttx

ttttxX

∫ ∫

∫
∞

∞−

∞

∞−

∞

∞−

−=

=−=

dsinjdcos

djsincosj

ωω

ωωω

 

Letting  and , we obtain ( ) ( )∫
∞

∞−

= ωω Utttx dcos ( ) ( )∫
∞

∞−

= ωω Vtttx dsin

 
  ( ) ( ) ( )ωωω VUjX j−= . 
 
Since ( )ωU  is even, i.e. ( ) ( )ωω UU =−  and ( )ωV  is odd, i.e. ( ) ( )ωω VV −=− , 
then 
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  ( ) ( ) ( )ωωω VUjX j+=− . 
 
Hence, we have 
 
  ( ) ( ) ( ) ( )ωωωω jjjj −−∠=∠−= XXXX . 
 
Thus, the magnitude spectrum is even and the phase spectrum is odd. 
 
Example 9.2 
 
 Given a fixed positive number α , let ( )tx  denote the signal defined by 
 

   ( )
.t

t,tA
tx

otherall0,
cos 0 ααω ≤≤−

⎩
⎨
⎧

=

 
Plot of ( )tx  is shown in Fig. 9.13. 

-α α 

x(t) 

t 

  Fig. 9.13. Plot of the signal in Example 9.2 
 
Its Fourier transform is 
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The spectrum of ( )tx  is depicted in Fig. 9.14. 

0ω0ω−

0 ω

( )ωjX

αA

  Fig. 9.14. Plot of the spectrum of the signal in Example 9.2 
 
From this figure it is seen that most of the spectral content of the signal is 
concentrated in the neighborhoods of 0ω  and ( )0ω− . 
 
Time shifting 
 
Let us consider a time signal ( )tx  delayed by  i.e. 0t ( )0ttx − . 
If  
 
  ( ) ( )ωj)( Xtx =F  
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then 
 

  ( ) ( )ωω je)( 0j
0 Xttx t−=−F . (9.20) 

 
Proof 
 
We set  into the definition formula ( 0ttx − )
 

  . ( ) ( ) ( ) ( ) ( )∫∫
∞

∞−

−−−
∞

∞−

− −−=−=− 0
jj

0
j

00 deede)( 00 ttttxtttxttx tttt ωωωF

 
Letting 0ttu −= , we have 
 

  . ( ) ( ) ( ωωωω jedee)( 00 jjj
0 Xuuxttx tut −

∞

∞−

−− ==− ∫F )

 
This property states that if a signal is delayed by , its Fourier transform equals 
the Fourier transform of the original signal multiplied by . Consequently, 
the amplitude spectrum is not affected because 

0t
0je tω−

 

  ( ) ( ) ( )ωωω ωω jjeje 00 jj XXX tt == −−  
 
whereas the phase spectrum is shifted by 0tω−  
 
  ( ) ( ) 0

j )j()j(e 0 tXXt ωωωω −∠=∠ − . 
 
Frequency shifting. Modulation 
 
If ( )tx  has the Fourier transform ( )ωjX , then  
 

  ( ) ( ))(je)( 0
j 0 ωωω −= Xtx tF . (9.21) 

 
Proof 
 
We substitute  into (9.14) and rearrange as follows ( ) ttx 0je ω

 

  . ( ) ( ) ( )∫∫
∞

∞−

−−−
∞

∞−

−=== )(jde)(dee)(e)( 0
jjjj 000 ωωωωωωω Xttxttxtx ttttF
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Example 9.3 
 
Let us consider the signal 
 
  ( ) ( ) ttxtg 0cosω= . (9.22) 
 
The signal ( )tx  is called the modulating signal and t0cosω  is called the carrier 
or the modulated signal. 
Since 
 

  
2
eecos

00 jj

0

tt

t
ωω

ω
−+

=  
 

then  
 

  ( ) ( ) ( ) tt txtxtg 00 jj e
2
1e

2
1 ωω −+= . 

 
Using the frequency shifting property, we obtain 
 

  ( ) ( ) ( )j(
2
1)j(

2
1)( 00 ωωωω ++−= XXtgF ) . (9.23) 

 
The above equation states that by multiplying the time function ( )tx  by t0cosω  
the original spectrum ( )ωjX is split into two parts so that half of it is shifted by 

 and the other half is shifted by 0ω 0ω−  (see Figs.9.15 and .9.16). 

X (jω) 

ω 0 

  Fig. 9.15. Spectrum of an example signal ( )tx  
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( )( )0j
2
1 ωω +X

( )( )tgF

ω ω0 -ω0 

( )( )0j
2
1 ωω −X

  Fig. 9.16. Spectrum of the signal ( ) ( ) ttxtg 0cosω=  
 
Differentiation 
 
Let ( )tx  be a signal with Fourier transform ( )ωjX ; then 
 

  ( ) ( ωω jj X
dt

tdx
=⎟

⎠
⎞

⎜
⎝
⎛F )

( )

. (9.24) 

 
Proof 
  
We use the inverse Fourier transform We use the inverse Fourier transform 
  

    ( ) ( )∫
∞

∞−

= ωω
π

ω dej
2
1 j tXtx  

 
and differentiate with respect to t 
 

  ( ) ( )∫
∞

∞−

= ωωω
π

ω dejj
2
1

d
d j tX

t
tx . 

 
We recognize the expression on the right hand side as the inverse Fourier 
transform of ( )ωω jj X . Thus, the equation 
 

  ( ) ( )ωω jj
d

d X
t
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⎠
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⎜
⎝
⎛F  
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holds. This result can be directly extended to the n-th derivative by repeated 
differentiations 
 

  ( ) ( ) ( ωω jj
d

d X
t

tx n
n

n

= ) . (9.25) 

 
Example 9.4 
 
Let us consider the triangular pulse shown in Fig.9.17. 

2a 3a0 a t

1

x(t)

  Fig. 9.17. Triangular pulse signal 
 
The derivative of  is a rectangular pulse signal (see Fig.9.18) ( )tx

a
1

t

a2
1

−

a 3a0

( )
t
tx

d
d

  Fig. 9.18. Derivative of the triangular signal of Figure 9.17 
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The Fourier transform of 
t
x

d
d  is 
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Application of the differentiation property yields 
 

  ( ) ⎟
⎠
⎞

⎜
⎝
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X 3jj e
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Hence, the equation 
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holds. 
 
Conjugation property 
 
The conjugation property states that 
 

  ( ) ( )ωj)( −= ∗∗ XtxF  (9.26) 
 

where ( )ωjX  is the Fourier transform of the signal ( )tx  which is generally 
complex and * is a symbol of conjugation. 
 
Proof 
 
Since 
 

   ( ) ( )∫
∞

∞−

−= ttxX tdej jωω

 

then 
 

  . ( ) ( )∫
∞

∞−

∗∗ = ttxX tdej jωω
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Replacing ω by -ω we obtain 
 

  . ( ) ( ) ( )∫
∞

∞−

∗−∗∗ ==− )(dej j txttxX t Fωω

 
In a special case where  is real, ( )tx ( ) ( )txtx =∗  holds and 
 

  . ( ) ( ) (∫
∞

∞−

−∗ ==− ωω ω jdej j XttxX t )

 
 
9.4. Convolution 
 
 Let us consider signals  and ( )tx1 ( )tx2  having the Fourier transforms ( )ωj1X  
and ( )ωj2X , respectively. The convolution of ( )tx1  and ( )tx2  is  
 

  . ( ) ( ) ( ) ( ) τττ dx 2121 −=∗ ∫
∞

∞−

txxtxt

 
The following theorem, called the convolution theorem, holds 
 
  ( ) ( ) ( )ωω jj)()( 2121 XXtxtx =∗F . (9.27) 
 
Example 9.5 
 
Figure 9.19 shows signals  and ( )tx1 ( )tx2 . 

3a2aa0
2
1

1

( )tx 2

t

(b)

a0

a
1

( )tx1

t

(a)

  Fig. 9.19. Signals for Example 9.5 
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We determine the convolution of these signals 
 

  . ( ) ( ) ( ) ( ) ( ) τττ d2121 −=∗= ∫
∞

∞−

txxtxtxtf

 
Using the graphical approach we find the convolution as shown in Fig.9.20 

2a 3a0 a t

1
x(t)

  Fig. 9.20. Convolution of the signals shown in Figure 9.19 
 
The Fourier transforms of ( )tx1  and ( )tx2  are: 
 

  ( ) ( )a
a

t

a
t

a
X ωω

ω
ω j

0

j
1 e1

j
1de1j −− −== ∫  

  ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +−=+= −−−− ∫∫ )e(e

2
11

j
1de

2
1dej 2jj

2
j

0

j
2

aa
a

a

t
a

t ttX ωωωω

ω
ω . 

 
Thus, using the convolution theorem, we obtain 
 

  ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −−== −− 1e

2
1e

2
31jj)( 3jj

221
aa

a
XXtf ωω

ω
ωωF . 

 
 Now we find the Fourier transform of the product of two signals. Let 

( ) ( ))(j 11 txX F=ω  and ( ) ( ))(j 22 txX F=ω , then 
 

( ) ( )( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )( ) .rrXrXrttxrX

ttxrrX

ttxtxtxtx

tr

trt

t

∫∫ ∫

∫ ∫

∫

∞

∞

∞

∞−

∞

∞

−

∞

∞−

∞

∞−

∞

∞−

−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

==

-
21

-

j-
21

j-
2

j
1

j-
2121

djj
2
1ddej

2
1

dedej
2
1

de

ω
ππ

π

ω

ω

ωF

 



 209

The integral on the right hand side is called the frequency convolution and 
denoted by 
 

  . ( ) ( )( ) ( ) ( )rXrXrrXrX jjdjj 21
-

21 ∗=−∫
∞

∞

ω

 
Thus, it holds 
 

  ( ) ( )( ) ( ) ( ωω
π

jj
2
1

2121 XXtxtx ∗=F ) . (9.28) 

 
Duality 
 
Recall the inverse Fourier transform  
 

  ( ) ( )∫
∞

∞−

= ωω
π

ω dej
2
1 j tXtx  

 
and change the sign of t as well as multiply both sides by π2  
 

  . ( ) ( ) ωωπ ω dej2 j tXtx −
∞

∞−
∫=−

 
Let us interchange variables ω  and t 
 
  tt jjor ↔↔ ωω  
 

  . ( ) ( ) ttXx tdej2 jωωπ −
∞

∞−
∫=−

 
Next we label  finding ( ) ( )tXtx̂ j=
 

  . (9.29) ( ) ( ) ( )(de2 j tx̂ttx̂x t F==− −
∞

∞−
∫ ωωπ )

 
Equation (9.29) shows the duality property of the Fourier transform which 
enables us to express the Fourier transform of the signal ( )tx̂  having the same 
form as ( )ωjX  in terms of ( )ω−x  having the same form as ( )tx − . 
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Example 9.6 
 
The signal ( )tx  shown in Fig.9.19 has the Fourier transform  
 

  ( )

2

2
1

2
1sin

j
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
ω

ω
ω

a

a
aX . 

0 a-a t

1

x(t)

  Fig. 9.21. Triangular signal for Example 9.6 
 
Hence, the signal  is ( ) ( )tXtx̂ j=
 

  ( )

2

2
1

2
1sin

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
at

at
atx̂ . 

 
Using the duality property, we obtain 
 
  ( ) ( ) ( )ωωπ j2(t)x X~xˆ =−=F  
 
where ( ωjX )~  is shown in Fig.9.20. 

0 a -a ω 

2π 
( )ωjX~

  Fig. 9.22. Fourier transform of ( )tx̂  
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9.5. Generalized Fourier transform 
 
 The Fourier transform of the unit impulse ( )tδ  defined in Section 1 is 
 

  ( ) ∫
∞

∞
=

−− ===
-

F 1ed)e()(
0

jj
t

tt ttt ωωδδ  

 
or 
 
  ( ) 1)( =tδF . (9.30) 
 
Let us consider the shifted unit impulse ( )0tt −δ . Its Fourier transform can be 
found using the time-shifting property 
 
  ( ) 0j

0 e)( ttt ωδ −=−F . (9.31) 
 
Now we find a time function ( )tf  such that its Fourier transform is ( )ωδ . We 
use the inverse Fourier transform 
 

  ( ) ( ) ( )∫
∞

∞−
=
====

ππ
ωωδ

π
ωδ

ω

ωω

2
1e

2
1de

2
1)(

0
jj1 tt-tf F . 

 
Thus, 
 

  ( )ωδ
π

=⎟
⎠
⎞

⎜
⎝
⎛

2
1

F  

or 
 
  ( ) ( )ωπδ21 =F  (9.32) 
 
holds. 
Equation (9.32) says that the Fourier transform of the constant 1 is a unit impulse 
at the origin with the strength π2 . 
 If the Fourier transform of a time function is ( )0ωωδ + , then the function is 
 

  ( ) ( ) tjtt- 0

0
e

2
1e

2
1de

2
1)( jj

00
1 ω

ωω

ωω

ππ
ωωωδ

π
ωωδ −

∞

∞−
−=∫ ==+=+F . 
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Hence, we have 
 

  ( ) ( )0
j 2e 0 ωωπδω +=− tF  (9.33) 

 
and replacing 0ω  by 0ω− , we obtain 
 
  ( ) ( )0

j 2e 0 ωωπδω −=tF . (9.34) 
 
The above results enable us to find the Fourier transform of t0cosω . Since 
 

  ( )ttt 00 jj
0 ee

2
1cos ωωω −+=  

 
by the linearity property we obtain 
 
  ( ) ( ))()(cos 000 ωωδωωδπω ++−=tF . (9.35) 
 
Equation (9.35) is illustrated in Fig.9.23. 

 

0 

( )t0cosωF

0ω− 0ω ω

( )0ωωπδ −( )0ωωπδ +

 
  Fig. 9.23. Fourier transform of t0cosω  
 
Similarly we find the Fourier transform of t0sinω  
 

  
( ) ( ) ( )

( ))()(j

)()(
j

ee
j2

1sin

00

00
jj

0
00

ωωδωωδπ

ωωδωωδπω ωω

−−+=

=+−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= − ttt FF

 

 
or  
 
  ( ) 0)(sinRe 0 =tωF  
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  ( ) ( ))()()t(sinIm 000 ωωδωωδπω −−+=F . (9.36) 
 
Equation (9.36) is illustrated in Fig.9.24. 

 

0

( )( )t0sinIm ωF

0ω− 0ω ω

( )0ωωπδ −−

( )0ωωπδ +

  Fig. 9.24. Fourier transform of t0sinω  
 
 
9.6. The Fourier transform for periodic signals 
 
 Let us consider a periodic signal ( )tx  with period T satisfying the Dirichlet 
conditions. The exponential Fourier series expansion of this signal is 
 

   (9.37) ( ) ∑
∞

−∞=

=
k

tk
kc~tx 0je ω

 

where 
T
πω 2

0 = . To find the Fourier transform of ( )tx , we substitute (9.37) into 

the definition formula (9.14) 
 

  . ( ) ∫ ∑
∞

∞−

−
∞

−∞=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= tc~X t

k

tk
k deej jj 0 ωωω

 
Changing the order of summing and integrating yields 
 

  . ( ) ( )tk

k
k

k

ttk
k c~tc~X 00 jjj edeej ωωωω ∑∑ ∫

∞

−∞=

∞

−∞=

∞

∞−

− =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= F
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Since 
 
  ( ) ( )0

j 2e 0 ωωπδω ktk −=F  
 
(see (9.34)) then it follows 
 

  . (9.38) ( ) ( 02j ωωδπω kc~X
k

k −= ∑
∞

−∞=

)

 
Thus, the Fourier transform of a periodic signal can be considered as a train of 
unit impulses occurring at the frequencies 0ωk  with the weighted coefficients 
equal to the Fourier coefficients multiplied by π2 . 
 
Example 9.7 
 
Let us consider the square wave signal shown in Fig.9.25 

-T T

A

( )tx

2
a

2
a

− t

  Fig. 9.25. Square wave signal for Example 9.7 
 
The exponential Fourier series coefficients of this signal are 
 

  

2

2
sin

0

0

ak

ak

T
aAc~k

ω

ω
= . 

 
Hence, using (9.38) we find 
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  ( ) ( )0

0

0

2

2
sin

2j ωωδ
ω

ω
πω kak

ak

T
aAX

k

−= ∑
∞

−∞=

. 

 
Example 9.8 
 
Let us consider a periodic sequence of unit impulses (see Fig.9.26). 

tsT3−
sT2sT

( )ts

0sT−
sT3sT2−

  Fig. 9.26. A periodic sequence of unit impulses  
 
This sequence has the representation 
 

  . (9.39) ( ) ( )∑
∞

−∞=

−=
k

skTtts δ

 
Let us compute the exponential Fourier series coefficients  kc~
 

  ( )
s

s
s

T

T

tk

s
k TT

tt
T

c~
s

s

s πωδ ω 21de1 2

2

j === ∫
−

− . 

 
Thus, the exponential Fourier series of ( )ts  is 
 

  ( ) ∑
∞

−∞=

=
k

tk

s

s

T
ts ωje1 . (9.40) 

 
To find the Fourier transform of ( )ts , we apply (9.38) 
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  ( ) ( ) (∑∑
∞

−∞=

∞

−∞=

−=−=
k

ss
k

s
s

kk
T

S ωωδωωωδπω 2j ) . (9.41) 

 
The spectrum of signal  is a sequence of the unit impulses shifted by ( )ts sω  one 
from another with the strength of each impulse equal sω  (see Fig.9.27) 

 

sωsω sωsωsωsωsω

sω3− sω2sω

( )ωjS

0 sω− ωsω3sω2−

  Fig. 9.27. Spectrum of the signal shown in Figure 9.26 
 
 
9.7. System response in terms of Fourier transform 
 
 We will study the response of an LTI system. The system input will be 
denoted by ( )tx  and the output by ( )ty . The Fourier transforms will be denoted 
by ( )ωjX  and ( )ωjY , respectively (see Fig.9.28). 

 

Y(jω) X(jω) 

y(t) x(t) 

LTI 

  Fig. 9.28. An LTI system 
 
The output signal  is related to the input signal ( )ty ( )tx  via convolution 
 

   (9.42) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ττττττ dd∫ ∫
∞

∞−

∞

∞−

−=−=∗= txhthxthtxty
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where  is the impulse response of the system. The convolution theorem 
(9.27) gives 

( )th

  ( ) ( ) ( )ωωω jXjHjY =  (9.43) 
 
where ( ) ( )(j thH F )=ω . Thus, we have 
 

  ( ) ( ) ( ) ( ) ( )
ω

ω

ωωω js
s

sttt sHtthtthtthH . 
=

=

∞

∞−

∞
−

∞
−− ==== ∫ ∫∫

j00

jj dededej

 
In the above rearrangements we have changed the lower limit of integration from 

 to 0 because the impulse response is zero for ∞− 0<t . Thus, ( )ωjH  equals the 
transfer function at , i. e. it is the frequency response function ω= js
 
  ( ) ( )

ω
ω jssHjH

=
= . (9.44) 

 
Example 9.9 
 
In the circuit of Fig.9.29 we determine the spectrum of the output voltage  
due to the input voltage 

( )tv0

( ) ( )tutv . t
i

2e−=

1Ω

vi(t) v0(t)1F

 

  Fig. 9.29. Circuit for Example 9.9 
 
At first, we determine the transfer function 
 

  ( ) ( )
( )sV
sV

sH
i

0= . 

 
Since  
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  ( ) ( ) ( )
1

1
11

0 +
=⋅

+
=

s
sV

s
s

sV
sV ii  

 
we have 
 

  ( )
1

1
+

=
s

sH . 

 
Hence, we may write 
 

  ( ) ( ) ω
ω ωω

ω
1jtan

2j e
1

1
j1

1j
−−

= +
=

+
== ssHH . (9.45) 

 
The Fourier transform of the input signal is 
 

  

( ) ( ) ( ) ( )

( ) .

tttuttvV

tj

tttt
ii

2
jtan

2
0

2

0

j2j2j

1

e
4

1
j2

1e
j2

1

dedeedej

ω
ω

ωωω

ωωω

ω

−−
∞

+−

∞

∞−

∞

∞−

∞
+−−−−

+
=

+
=

+
−=

==== ∫ ∫ ∫
 

 
Thus the output spectrum is 
 
  ( ) ( ) ( )ωφωω j

00 ejj VV =  
 
where: 
 

  ( ) ( )( )220
41

1j
ωω

ω
++

=V  

 

  ( )
2

11 ωωωφ −− −−= tantan . 

 
The amplitude and phase spectra are sketched in Figs. 9.30 and 9.31. 
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( )ωj0V

0.5

ω 0 

  Fig. 9.30. Amplitude spectrum of ( )tv0  

-π 

π 

φ(ω)

ω 

 

  Fig. 9.31. Phase spectrum of ( )tv0  
 
Example 9.10 
 
 Let us consider an LTI system specified by the frequency response function 
( ) ( ) ( )ωφωω jjejj HHH =  with the input signal 

 

  . (9.46) ( ) ( )∑
=

+=
N

k
kkk tAtx

1

cos αω
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To determine the output signal ( )ty , we use (9.42). First, we find the Fourier 
transform of the signal ( ) ( )kkkk tAtx αω += cos . We rewrite this signal in the 
form 
 
  ( ) ( )kkkkkk ttAtx αωαω sinsincoscos −=  
 
and apply (9.34)-(9.35) 
 

  
( ) ( )[

( )] .
AX

kkk

kkkkk

)()(jsin
)()(cosj

ωωδωωδα
ωωδωωδαπω

+−−+
+++−=

 

 
Thus, we can determine the response of the system due to ( )txk  as follows 
 

  
( ) ( ) ( ) ( )[

( )] .
HAY

kkk

kkkkk
H

)()(jsin
)()(cosejj jj

ωωδωωδα

ωωδωωδαωπω ωφ

+−−+

+++−=
 

 
To find , we apply the inverse Fourier transform  ( )tyk

 

  
( ) ( ) ( ) ( ) ( )[

( ) ( ) ( )].H

HAtYty

kHk

kHk

t
kkk

t
kkk

kt
k

)j(j

)(jjj

ejjsincos

ejjsincos
2

dej
2
1

ωφω

ωφωω

ωαα

ωααω
π

−−−

+
∞

∞−

−−+

++== ∫  

 
Since ( ) ( )kk HH ω=ω− jj  and ( ) ( )kHkH ω−φ−=ω−φ jj , then 
 

( ) ( ) ( ) ( )[
( ) ( ) ( )]

( ) ( ) ( )[ ]
( ) ( ) (( )
( )

)
( ) .tHA

ttHA

HA
H

HAty

kkkkk

kHkkkHkkkk

t
kkk

k

t
kkk

t
kkk

k
k

kHk

kHk

kHk

)j(cosj

)j(sinsin)j(coscosj

ejjsincosRe2
2

ejjsincos

ejjsincos
2

)(jj

)(jj

)(jj

ωφαωω

ωφωαωφωαω

ωαα

ωαα

ωαα

ωφω

ωφω

ωφω

++=

=+−+=

=+=

=−+

++=

+

+−

+

 

 
Hence, we obtain 
 

  ( ) ( ) ( )j(tcosjHAty kHkk

N

k
kk ωφαωω ++=∑

=1

) . (9.46) 
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