9. The Fourier Transform

9.1. Introduction

Up to this point we considered periodic signals. The signals can be expanded
in Fourier series consisting of infinite number of harmonics. In this section we

will study situations where the signals are not periodic. To extend the Fourier
method we introduce the Fourier transform.

Let us consider a finite duration signal x(t) defined for every t in the interval
[- B, B] and equal to zero outside this interval as depicted in Fig.9.1.

X(t)

f . >
B lo B t

Fig. 9.1. A finite duration signal
Since the signal x(t) is not periodic, it cannot be expanded into Fourier series.
However, the Fourier series method can be used to represent x(t) in any interval

[—;/ y] where y> g. For this purpose we create a periodic signal i() with
period 2y which is identical to x for everytin —y <t <y (see Fig.9.2).

A

-vﬁ 27t

Flg. 9.2. A periodic signal that is equwalent to the signal of Figure 9.1
within the interval [y, 7]
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Since X(t) is periodic with period T =2y, it can be expanded in the exponential
Fourier series. In the interval [y, 7], the Fourier series expansion is x(t). Thus,

x(t)= Zﬁnejnwot —y<t<y
n=-w

holds where

2
600 Z?

and the Fourier coefficients ¢, are uniquely determined by x(t)

x(t)e "o'dt .

— o [

1
T

N

Let the integral (9.2) be denoted by X (jney,), i.e.

x(t)e "o'dt

—ro |

X (jna,)=

| =

then
€, =2 X(jnwy) =22 X (jnap).
T 27
Inserting (9.4) into (9.1) yields

X(t)z% Z:X(jna)o)ejnw"ta)0 —y<t<y.

n=-ow

(9.1)

(9.2)

(9.3)

(9.4)

(9.5)

It should be stressed that the two sides of equation (9.5) are equal for —y <t < y.
Outside this interval x(t) is zero and differs from the periodic signal specified by

the right hand side.

Observe that as y — o« and consequently T — oo the signal i(t) is the same as
x(t). The right hand side of (9.5) gives the sum of exponential harmonics of



188

. 2
frequencies na,, where n=0,+1,£2,---. AS T >0, @, =?ﬂ tends to zero;

hence, the distance between the frequencies of subsequent harmonics approaches
zero. Thus, the discrete variable ne, becomes a continuous variable o and o,

becomes dw. Consequently, the sum on the right hand side of (9.5) should be
replaced by an integral. Thus, in the limitas T — oo, relationship (9.5) becomes

X( )=2i lim ZX ina, )ejnwota) =

7Z'T~>oon o
. (9.6)
1 . ot
_E_-[OX(M))EJ do.
To find X (jo), we use (9.3) repeated below
T
E .
X (jne, )= jx(t)e“””otdt
:
and assume that T — o«
.
2 _ © _
X(jo)=lim [ x(t)e™dt= [x(t)e *dt. 9.7)
T oo T i
2
Equations:
X (jo)= [x(t)e dt (9.8)
x(t)= - [X(jo)edo (9.9)
27

constitute the Fourier transform pair. X (je) is called the Fourier transform of
the time function x(t), whereas x(t) is the inverse Fourier transform of X (je).

The integral on the right hand side of (9.8) is called the Fourier integral.
Sufficient conditions for the existence of the Fourier transform are similar to
the Dirichlet conditions for the Fourier series.
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They are as follows:
(i x(t) must be absolutely integrable, i.e.

0

[ Ix(®)]dt <o

—0

(iiy On any finite interval x(t) has at most a finite number of maxima and
minima.
(iii) On any finite interval x(t) has at most a finite number of discontinuities
and each of these discontinuities is finite.
The conditions are sufficient but not necessary. Consequently, many useful
signals which do not meet them can also be analyzed using the Fourier transform.
Let us consider the condition (i). Unfortunately, many useful signals, e.g. the
unit step function as well as periodic functions, are not absolutely integrable. It
can be shown that any power signal (see Section 12) which meets the conditions
(i) and (iii) has a Fourier transform.
To determine the Fourier transform of a function, which is not absolutely
integrable, we extend the idea of the Fourier transform as follows.
We multiply x(t) by a factor p(c,t) so that p(0,t)=1 and the integral

o0

[ Ix(t) ple,t)]

—0

is convergent. For instance, the factor can be chosen as
p(c,t)ze‘“z, c>0.

Next, we find the Fourier transform of x(t)p(c,t). If the Fourier transform exists

for any ¢ > 0, then decreasing ¢ we obtain a sequence of the Fourier transforms.
The limit of this sequence, as ¢ — 0, is assumed to be the Fourier transform of
x(t). This transform is known under the name of the Fourier transform in a limit

sense.
In Section 2 we defined the Laplace transform

L(x()=X(s)= [ x(t)e dt
0
where s=o0+ jw is a complex variable called the complex frequency. To find

the relationship of the Laplace transform to the Fourier transform given by (9.8)
we consider a signal x(t)u(t). Then, we may write



190

F(xu@)=X(jo)= Tx(t)u(t)e“"”‘dt =
[xtedt=x(s)],_,

Thus, in this case we can obtain the Fourier transform from the Laplace
transform replacing s by jo

F(x(t)u() =L (x))|

s=jw

provided that each transform exists. For example if

x(t)= Ke™ul(t), a>0
then
K
X(s)=——
) s+a
and
. K
Xl(jo)= .
(J ) jo+a
Example 9.1
Let us consider a rectangular pulse shown in Fig.9.3.
A X
A
>
0 t
2 2

Fig. 9.3. A rectangular pulse

To find the Fourier transform of this signal, we use (9.8)
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A jo jo
2
Jog ey sin — wa
:Ee e ZES"’I%:&A
0] 2j 10} 2 L
Thus, we have
1
sin ~ wa
X (joo)=aA—-2 (9.10)
~wa
2

Observe that apart from the constant aA the function (9.10) has the form of the
function sinc x=w where x=%ma. The plot of this function is depicted in

X
Fig.9.4.

A sincx

A [N\,

>
-4M7z -27{\/7[ 0 72'\/272 371'\/47r X

Fig. 9.4. Plot of sincx

Hence, the plot of X (je) as a function of o is as shown in Fig.9.5.
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4 x(jo)

Fig. 9.5. Plot of the Fourier transform of the pulse shown in Fig.9.3

9.2. Amplitude and phase spectra
Let us consider a rectangular pulse train as shown in Fig.9.6.

Ay®

A

4
SN S
|
N | o
o
N | o
N |
_|

Fig. 9.6. Rectangular pulse train

The Fourier coefficients for this signal are given by

—
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T a
~ 1 ‘ —jna)t 1 ‘ —jnagt
c,=— | ylt o'dt == | Ae !"0'dt
e rat]
2 2
where
s
(o T
Hence, we have
1
_ Aasmin%a
C,=— T
T “nwya
2
or
sin = nw,a
ET = Aalz—. (9.11)
—nw,a
2

Let us compare the Fourier transform X(ja)) of the rectangular pulse shown in
Fig.9.3 (see (9.10)) and c,T for the rectangular pulse train shown in Fig.9.6 (see
(9.11)). Both relationships have the same form, however, X(ja)) is a function of
the continuous variable @, whereas c¢,T has values for discrete frequencies
na, . Hence, the magnitude of X (je) is the envelope of the magnitudes of €, T .
We examine ¢, T as a is fixed and T changes and assumes three values: 2a,
43, and 8a.
The envelope for |EnT| does not depend on T; consequently it is the same in the
three cases and given by




194

The plot of the envelope is shown in Fig.9.7.

4 | x(jo)|
Aa
T hd hd T >
bz _Ar 2z 10 22 A4z bz
a a a a a a
Fig. 9.7. Plot of the envelope for |, T|
For T =2a the amplitude spectrum | EnT| is defined at the frequencies
2r 2r Vs
Nwy=N—=nN—=n—.
T 2a a
This spectrum is depicted in Fig.9.8
AlCT|
Aa 4
A
l \
1 \
A
] \
] \
] \
] \
2R S \ /‘I N\
\
s [N ]- Y U AN Y >
bz Az 2z N0 2z Az 6z @
a a a a a a

Fig. 9.8. The amplitude spectrum |, T| for T =2a

Now we consider the case where T =4a. Then the amplitude spectrum |E:'nT| is
defined at frequencies



21 27 T
Nw, =N—=n—=n—.
T da 2a

This spectrum is depicted in Fig.9.9.

1
1

o roA] T‘;"

[L \’I’h\,

hg >
bz 4z 2z 10 2_7f 7. b
a a a a a
Fig. 9.9. The amplitude spectrum | c,T| for T =4a
For T =8a the amplitude spectrum | EnT| is defined at frequencies
27 27 i
Nwy=N—=N—=n—.
T 8a 4a
The spectrum is shown in Fig.9.10.
A |CT|
Aa L
1 1
) \
I \
\
\
\I,qﬂﬂh, LIl [§ ”nrn{mnbw >
br _4r 2n loo2n 4r B o
a a a a a a

Fig. 9.10. The amplitude spectrum | ¢, T| for T =8a

195



196

The above discussion shows that when T increases, the separation of the
amplitude spectrum lines of C.T decreases. Thus, the number of harmonics in a

given frequency interval increases. In the limit as T — oo the distance between
the lines tends to zero. Consequently, the discrete spectrum | 6nT| becomes the
continuous spectrum represented by the envelope of | €,T|, i.e. by | X (jo)].

Another interpretation is as follows. As T increases the distance between
frequencies of subsequent harmonics decreases. In the limit as T — o this
distance tends to zero and the amplitudes of the exponential frequencies

represented by |, | tend to zero, because
[CiT]
T

& |=

and | €,T| is framed by | X (jo)|.
The above interpretation has been given for the rectangular pulse but it is
valid in general. For an arbitrary signal x(t), defined in a finite time interval

{—%,%} , and equal to zero outside this interval, we create a periodic signal y(t)

with period T > a which is identical with x(t) for —% <t< % The exponential

Fourier series coefficients ¢, of the signal y(t) satisfy the relation

x(t)e "o'dt . (9.12)

——

T:

N

The Fourier transform of x(t) is

X(jo)= [x(t)e“dt. (9.13)

—— |

N |

Relationships (9.12) and (9.13) are identical in form but the former is defined for
discrete frequencies whereas the latter for continuous frequencies. As a matter of
fact, C,T equals the samples of X (je) at

27
O=Nwy=N—.
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The magnitude |X(ja))| will be called the continuous amplitude spectrum and
/(X (jw)) the continuous phase spectrum of a nonperiodic signal x(t).

9.3. Properties of the Fourier transform

In this Section we consider a number of properties of the Fourier transform.
Recall that a signal x(t) and its Fourier transform X (jo) are related by the pair

of equations:

F(x(t)=X(jow)= Tx(t)ej‘”tdt (9.14)

o0

9?’(><(jw))=x(t)=%jx(jw)ejw‘dw. (9.15)

Linearity

If X,(jo) and X,(jo) are the Fourier transforms of x,(t) and x,(t),
respectively, then for arbitrary constants ¢, and c, (real or complex) the Fourier
transform of the sum:

¢, % (t)+¢,%, (t) (9.16)

¢, X, (jo)+ ¢, X, (jo). (9.17)
This property follows directly by substituting (9.16) into (9.14).
Scaling

If x(t) has the Fourier transform X (j), then for any real constant o # 0

g(x(at)):ﬁx( jgj (9.18)

Proof
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To prove the property we consider two cases of positive and negative values of
a.

For a >0 let u=at . Substituting this into (9.14) yields

0

Fx(at)= [ x(e)eidt =2 [xu)e "=t x( jgj_

a |(Z| a

—00

For a <0 we have

—00

F(x(at))= T x(at) e dt :jjx(u)e_jgudu :ix(jﬁ) _

a |0£| o

o0

Combining these two results gives the relationship (9.18).
Letting oo = -1, we obtain

F(x(-1)=X (- jo). (9.19)

Thus, reversing a signal in time implicates reversing its Fourier transform. The

scaling property states that scaling in time by a factor o corresponds to scaling in
1 . .

frequency by a factor —. Thus, when the time scale is expanded by the factor,
(04

the frequency spectrum is contracted by the same factor and vice versa. It is
illustrated in figures 9.11 and 9.12.

A 7(xb)=X(jo)

A X Aa
A
> ' =
0 t 2 o ®
——a —a _ﬁ __7[ _ﬂ- ﬁ
2 a a a a

Fig. 9.11. Rectangular pulse and its frequency spectrum
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; A AN
K 0 a t N 0\/ \/w
_ﬁﬂ' 7\J 2«

a a a a

Fig. 9.12. Rectangular pulse with expended time scale and its frequency
spectrum

Let us consider a situation where x(t) is a real function of t. Using Euler’s
identity we obtain

X(jo)= TX('[)(COSa)t — jsinwt)dt =

= I x(t)coswtdt — | J x(t)sinotdt .

—00

Letting J.X(t)COSa)tdt=U(a)) and '[x(t)sina)tdtzv(a)),we obtain

—0o0 —00

X(jo)=U(e)- V(o).

Shince U(w) is even, i.e. U(-w)=U(w) and V(w) is odd, i.e. V(-w)=-V(w),
then
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X (- jw)=U(0)+V(a).
Hence, we have
| X(io)|=| X(-j)| ZX(jo)=-2X (- jo).
Thus, the magnitude spectrum is even and the phase spectrum is odd.
Example 9.2

Given a fixed positive number «, let x(t) denote the signal defined by

(t)= Acosat, —-as<t<a
B 0, all other t

Plot of x(t) is shown in Fig. 9.13.
A X1

Fig. 9.13. Plot of the signal in Example 9.2

Its Fourier transform is

~V
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X(jo)= J- x(t)e dt = AJ-cosa)otcosa)t dt —jA jcoswotsinwt dt =

—-a —-a

= 2Aj cosaptcosat dt = A'[ (cos(@ — a, )t + cos(@ + ay, )t)dt =
0 0

:Aa[sin(a)—a)o)a+sin(a)+a)0)a]

(a)_a)o)a (Cl)+0)o)a
The spectrum of x(t) is depicted in Fig. 9.14.
A X(ja))

Aa

Fig. 9.14. Plot of the spectrum of the signal in Example 9.2

From this figure it is seen that most of the spectral content of the signal is
concentrated in the neighborhoods of @, and (- ).

Time shifting

Let us consider a time signal x(t) delayed by t, i.e. x(t—t,).
If

F(x(1)=X(jo)
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then
F(x(t-ty))=eX(jo). (9.20)
Proof

We set x(t —t, ) into the definition formula

F(X-1))= [Xt-t)e dt= [x(t-t))e " e od(t—t,).

Letting u =t —t,, we have

F(x(t-ty))=e 1" J.x(u)e‘j“’”du =e X (jw).
This property states that if a signal is delayed by t,, its Fourier transform equals

the Fourier transform of the original signal multiplied by e ’“* . Consequently,
the amplitude spectrum is not affected because

e x(ie)| - 7] X (o) =)

whereas the phase spectrum is shifted by — ot,
e X (jo))= £(X (je))- aty.
Frequency shifting. Modulation
If x(t) has the Fourier transform X (je), then
7(x®) e )= X (j(@-ay)). (9.21)
Proof

We substitute x(t)e!" into (9.14) and rearrange as follows

F(xyeit)= Tx(t)eiwo‘e-i”‘dt - Tx(t)e-l'(”—wo)‘dt = X (j(0—ay)).

—00 —0o0
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Example 9.3
Let us consider the signal

g(t)=x(t)cos gt . (9.22)

The signal x(t) is called the modulating signal and cosm,t is called the carrier

or the modulated signal.
Since

ejaJOt + e—ngt

coS wpt = 5

then

g(t)=%x(t)ej“’°t +%x(t)e‘j“’°t.
Using the frequency shifting property, we obtain
1,/. 1,/.
Z(90)=5 X (i(@=-wp))+ 5 X(i(@+ ). (9.23)

The above equation states that by multiplying the time function x(t) by cosm,t
the original spectrum X(ja;)is split into two parts so that half of it is shifted by
®, and the other half is shifted by — o, (see Figs.9.15 and .9.16).

A X(o)

Fig. 9.15. Spectrum of an example signal x(t)
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A 7(9(t)
1,,. 1,,/.
S Xlil@+a)) 5> Xlilo-a,))
t t >
2 (0] n)
Fig. 9.16. Spectrum of the signal g(t)= x(t)cos w,t
Differentiation
Let x(t) be a signal with Fourier transform X (je); then
g(dz—?)j =joX(jo). (9.24)

Proof

We use the inverse Fourier transform

and differentiate with respect to t

dx(t) 1 T oL\ et
- = [joX(jo)e"do.
ot 2”:[0]60 (jo)e!'dw

We recognize the expression on the right hand side as the inverse Fourier
transform of jwX (jw). Thus, the equation

9[dx—&)j=ij(jw)

dt
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holds. This result can be directly extended to the n-th derivative by repeated
differentiations

X _ (o) x(jo). (9.25)

Example 9.4

Let us consider the triangular pulse shown in Fig.9.17.

o
QD
N
QD
w
QD
—

Fig. 9.17. Triangular pulse signal

The derivative of x(t) is a rectangular pulse signal (see Fig.9.18)

dx(t)
A gt
1
a
|
0 a 3a t
1
2a

Fig. 9.18. Derivative of the triangular signal of Figure 9.17
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The Fourier transform of % is

a 3a
g[ dX(t)] _ lJ‘e—ja)tdt _Zi Ie—jMdt = ii (_ e—jwt

dt ay as ajo

a jot

1
+=>e
2

3a
a

0

jowa 2
=L(1—§e‘j“’a +£e‘j‘”3a).
joa 2 2

Application of the differentiation property yields

. . 1 3 1
X (jo)=——|1-2eion { Zgriosa |
joX(jo) j ( > ; j

Hence, the equation

X(ja))za)i(ge"“’a —%e“”’sa —1}
holds.
Conjugation property
The conjugation property states that
7 X' @®)=Xx"(jo) (9.26)

where X(jw) is the Fourier transform of the signal x(t) which is generally
complex and * is a symbol of conjugation.

Proof
Since

X(jo)= [x(t)e
then B

X*(jo)= Ix*(t)ej(”‘dt.
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Replacing o by -m we obtain
X*(-jo)= [x)e dt=7(x ().
In a special case where x(t) is real, x"(t)=x(t) holds and

X (- jo)= [xtt)e ™t = X jo).

9.4. Convolution

Let us consider signals x,(t) and x,(t) having the Fourier transforms X,(jo)
and X,(jw), respectively. The convolution of x,(t) and x,(t) is

lt)= [ale)xle-e)de.

The following theorem, called the convolution theorem, holds
Fa®)*%0)=X,(jo) X, (jo). (9:27)
Example 9.5

Figure 9.19 shows signals x,(t) and x,(t).

@  Ax() (b)  Ax(t)
1
a 11
> 2 } } |
0 a t 0 a 2a 3a t

Fig. 9.19. Signals for Example 9.5
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We determine the convolution of these signals
)= m0)wx,l0)= [x()xl-e)dr.
Using the graphical approach we find the convolution as shown in Fig.9.20

x(t) A
Ly !

0 a 2a 3a t
Fig. 9.20. Convolution of the signals shown in Figure 9.19

The Fourier transforms of x,(t) and x,(t) are:

e L)

a 2a
Xz<iw>=Ie‘“"‘dt+$Ie e b o)

0 a

Thus, using the convolution theorem, we obtain

_y (i R (R S P e
F(1O)=Xu(0)X,(j0)=—1{ Je b Ze b -],
Now we find the Fourier transform of the product of two signals. Let
X, (jo)= 7 (% (1) and X, (jo)= T (x, (1)), then

0

F(x,(t) %, le X, (t)e 1 "dt =

= T [%wal(jr)ej”erxz(t)e'j“"dt =

o0

217[ I X, (jr LTXZ o-r dtJdr—%]le(jr)xz(j(w_r))dr.

—00
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The integral on the right hand side is called the frequency convolution and
denoted by

0

J.Xl(jr)Xz(j(a)— r))dr = X, (jr)x X, (jr).

=0

Thus, it holds

T lt) = X)X, o). 0.29)

Duality

Recall the inverse Fourier transform
N
x(t)=— IX(]a))eJ do
27 i
and change the sign of t as well as multiply both sides by 27z

20(-)= [ X (jo)e dor.

Let us interchange variables @ and t

w <>t or jo<jt

2mx(~ )= T X (jt)e i dt .

—00

Next we label X(t)= X (jt) finding
2(-00)= [R(O)e ™t = 7(%(). (9.29)

Equation (9.29) shows the duality property of the Fourier transform which
enables us to express the Fourier transform of the signal $<(t) having the same

formas X(jw) in terms of x(—w) having the same form as x(-t).
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Example 9.6

The signal x(t) shown in Fig.9.19 has the Fourier transform

sin=aw
X(jw)=a 1
“aw
2
x(t)
1
-a |O a

Fig. 9.21. Triangular signal for Example 9.6

Hence, the signal X(t)=X(jt) is

Using the duality property, we obtain

F(%(0)=2m(-0)=

(io)

where X (jo) is shown in Fig.9.20.

2r

-a |O é

Fig. 9.22. Fourier transform of X(t)
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9.5. Generalized Fourier transform

The Fourier transform of the unit impulse 3(t) defined in Section 1 is

t=0

F(5))= Tﬁ(t)e‘j”’tdt = e-iwt\ =1

or
F(5@t)=1. (9.30)

Let us consider the shifted unit impulse &(t—t,). Its Fourier transform can be
found using the time-shifting property

F(6@t-t,))=e", (9.31)

Now we find a time function f(t) such that its Fourier transform is &(w). We
use the inverse Fourier transform

_ -1 :iw jat :i jot :i
f(t)=7(5(w)) 2”__[06(a))e do=——el| =
Thus,
y(ijza(a})
27
or
F1)=225(w) (9.32)
holds.

Equation (9.32) says that the Fourier transform of the constant 1 is a unit impulse
at the origin with the strength 27 .
If the Fourier transform of a time function is §(@ + @, ), then the function is

87-1(5(a)+a)o))=$ J.S(a”“a’o)ej“’tda):%ej“’t‘w:% Z%e—jwot .
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Hence, we have

Fle7%)= 2250+ @,) (9.33)
and replacing @, by —a,, we obtain

T )= 225 (0-a,). (9.34)

The above results enable us to find the Fourier transform of cosw,t. Since
1/ : r
coS a)ot — E(elwot +e JaJot)

by the linearity property we obtain
F(coswgt) = (5 (0 — wy) + 8 (@ + @) (9.35)
Equation (9.35) is illustrated in Fig.9.23.

A 7 (cos w,t)

7[5(&)-!—&)0) 72'5(60—0)0)

Fig. 9.23. Fourier transform of cosw,t

Similarly we find the Fourier transform of sinw,t

F(sinagt) = Lgé“(zij_(ejwoI —g it )] = %(5@— w,) — 5 (0+ )=

:jﬂ(5(w+w0)—5(a)—a)o))

or

Re(F (sinw,t))=0
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IM(Z (sinwyt )= 7(( @+ @y )~ (w0 -y ). (9.36)
Equation (9.36) is illustrated in Fig.9.24.

A Im(F(sinwyt))

78(w + )

2V

) 0 @y

— 15(0 - w,)

Fig. 9.24. Fourier transform of sinw,t

9.6. The Fourier transform for periodic signals

Let us consider a periodic signal x(t) with period T satisfying the Dirichlet
conditions. The exponential Fourier series expansion of this signal is

X(t)= Y gl (9.37)
k=—0

where @, =2T—”. To find the Fourier transform of x(t), we substitute (9.37) into
the definition formula (9.14)

X(jo)= T ( iﬁkejk“""}ej“"dt.

—oo \k=—0

Changing the order of summing and integrating yields
X(Ja)): Z {Ek J.ejka)ote—ja)tdt] _ Zakg(ejk(um).
k=—o0

K=o\ o
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Since
y7(ejk“’°t )= 2765 (0 —Ke, )

(see (9.34)) then it follows

X(ja)):27riffk5(a)—ka)o). (9.38)

k=—o0

Thus, the Fourier transform of a periodic signal can be considered as a train of
unit impulses occurring at the frequencies ke, with the weighted coefficients

equal to the Fourier coefficients multiplied by 27 .
Example 9.7

Let us consider the square wave signal shown in Fig.9.25

A X(t)

A

2 2
Fig. 9.25. Square wave signal for Example 9.7

The exponential Fourier series coefficients of this signal are

Hence, using (9.38) we find



Example 9.8

Let us consider a periodic sequence of unit impulses (see Fig.9.26).

s(t)

|

3T, 21, T ‘0 , 2T, 3T

Fig. 9.26. A periodic sequence of unit impulses

This sequence has the representation
s(t)= D o(t—kT,).
k=—o0

Let us compute the exponential Fourier series coefficients c,

Ts

_ 1 7 B 1 27
=— [5(t)e *stdt == ===
C, T JT.S (t)e T o, T

2

Thus, the exponential Fourier series of s(t) is

s(t)= L ieik“’st .
TS k=—w

To find the Fourier transform of s(t), we apply (9.38)
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(9.39)

(9.40)
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S(ja))zi—ﬂ i&(a)—ka)s)za)sié(a)—kws). (9.41)
k=0

S k=—w

The spectrum of signal s(t) is a sequence of the unit impulses shifted by «, one
from another with the strength of each impulse equal o, (see Fig.9.27)

s(jo)

-30, 20, —0; |0 @, 2o, 3w,

Fig. 9.27. Spectrum of the signal shown in Figure 9.26

9.7. System response in terms of Fourier transform

We will study the response of an LTI system. The system input will be
denoted by x(t) and the output by y(t). The Fourier transforms will be denoted

by X(jw) and Y(jw), respectively (see Fig.9.28).

X(t) y(®)
—»—— LTI ———
X(jw) Y(jw)

Fig. 9.28. An LTI system

The output signal y(t) is related to the input signal x(t) via convolution

)= x(0)hl)= [x(ehE-r)dr = [he)xe-r)ar  ©42)
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where h(t) is the impulse response of the system. The convolution theorem

(9.27) gives
Y(jo)=H(jo)X(jo) (9.43)

where H(jo)=2(h(t)). Thus, we have
H(jo)= [ hit)e dt= [h(t)e “dt=[h{t)e | =H(s)|_,, -
-0 0 0 s=jo

In the above rearrangements we have changed the lower limit of integration from
—oo to 0 because the impulse response is zero for t <0. Thus, H (jm) equals the

transfer function at s= jw, i. e. it is the frequency response function
H(jo)=H (S)L:,-w- (9.44)

Example 9.9

In the circuit of Fig.9.29 we determine the spectrum of the output voltage v, (t)
due to the input voltage v; (t)=e*"u(t).

10

o

w(o) D — i )

Fig. 9.29. Circuit for Example 9.9

At first, we determine the transfer function

Since
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Vils) 1 V(s
w111
1+—
s
we have
1
H(s)=——
(5) s+1
Hence, we may write
H(jo)=H(s)] ! 1 o, (9.45)

o T 1t jo V1+ 0

The Fourier transform of the input signal is

V(jo)= .[vi (t)eidt = I e ?'u(t)e dt :Ie‘(zﬂw)tdt -
o .

—0
T 1 jt?
_ e 2

1 -(2+jol| _ _
o 2+io Jaie?

2+ o

Thus the output spectrum is
Vo(jw) = |Vo(ja’)|ej¢(w)
where:

1

\/(1+ a)z)(4+a)2)

¢(a))=—tan‘1a)—tan‘l%.

|V0(ja))|=

The amplitude and phase spectra are sketched in Figs. 9.30 and 9.31.
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A ‘Vo (Ja’)‘
0.5
>
0 0]
Fig. 9.30. Amplitude spectrum of v, (t)
A o)
____________________________ = 72'
>
w
—72' —_,——— e, ————————

Fig. 9.31. Phase spectrum of v, (t)

Example 9.10

Let us consider an LTI system specified by the frequency response function
H(jw)=|H(jo)|e"™ ) with the input signal

N

X(t)=>" Acos(ot+e). (9.46)

k=1
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To determine the output signal y(t), we use (9.42). First, we find the Fourier
transform of the signal x,(t)= A.cos(mt+a, ). We rewrite this signal in the
form

%, (t)= A (cos mytcos a, —sina,tsina )
and apply (9.34)-(9.35)

Xk(ja))z Akﬁ[COSak(5(aJ—a)k) +5(a)+cak))+
+jsing, (6(0-w) - 5(0+a,))].

Thus, we can determine the response of the system due to x, (t) as follows

Y (jo)= Ak7l'| H (ja))|ej¢H(j“’)[Cosak(5(a)—a)k) +8(w+a,))+
+jsing, (S(w-w,) - 5(0+a,))].

To find y, (t), we apply the inverse Fourier transform

Yk (t)=% IY(jw)eiadt :%[(Cosak + jsinak)| H (ja,k)|ej(wkt+¢H (o) 4
+(cosa - jsine )| H(- jay, ) [eet=# (*jwk))].
Since |H(_j°°k)|:| H(jmk)| and ¢y, (— joo )=~y (- joo, ), then
Vi (t)=%[(COSO{k + jsinay )| H(jeo, )| et G0) 1
+(cosay — jsina )| H(jo ) [ ilext (jzuk))]:
:%ZRe [(COSak + jsing, )| H(joy ) [t (m))]:

= AlH(jo)|(coseycos(@t + ¢y (i@, ) -sinasin(ot + ¢, (jo,)) =
= A|H(jo,)[cos(at+a, +d(ja,)).

Hence, we obtain

y(t)=> AlH(jo)|cos(ot + e, + 4 (i )). (9.46)
k=1
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