Stability in electronic circuits

\[\frac{dx}{dt} = f(x, t) \]

Definition 1
Consider a solution \(x^0(t) \) generated by an initial condition \(x^0(0) \) and a neighboring solution \(x(t) \). The solution \(x^0(t) \) is stable if for any \(\epsilon > 0 \) there exists a \(\delta > 0 \) such that if

\[|x(0) - x^0(0)| < \delta \]

then

\[|x(t) - x^0(t)| < \epsilon \quad \text{for all} \quad t \geq 0 \]

If \(x^0(t) \) is not stable, it is said to be unstable.

Definition 2
\(x^0 \) is said to be asymptotically stable if it is stable, and if

\[\lim_{t \to \infty} |x(t) - x^0(t)| = 0 \]

Fig. 1
Autonomous equation
\[
\frac{dx}{dt} = f(x) \quad x^0 - \text{the equilibrium point, } f(x^0) = 0
\]
\[
x = x^0 + y
\]
\[
\frac{dy}{dt} = f(y + x^0)
\]
\[
\frac{dy}{dt} = g(y)
\]
\[
g(y) = f(y + x^0)
\]
\[
g(0) = f(x^0) = 0
\]

0 is the equilibrium point of
\[
\frac{dy}{dt} = g(y)
\]
\[
\frac{dx}{dt} = f(x, t)
\]
\[
x = [x_1 \cdots x_n]^T
\]
\[
\|x\| = \sqrt{x_1^2 + \cdots + x_n^2}
\]

Stability of the circuit as a whole (global stability)

Definition 3
A circuit is said to be completely stable if for any solution \(x(t) \)
\[
\lim_{t \to \infty} x(t) = 0
\]

Definition 4
A circuit is said to be Lagrange stable if all solutions remain bounded as \(t \to \infty \); that is, given any initial condition \(x(0) \), there exists an \(M \) (a function of \(x(0) \)), such that \(\|x(t)\| < M \) for all \(t \geq 0 \). If a circuit is not Lagrange stable, it will be called unstable.

Local stability, Lyapunov’s first method
\[
\frac{dx}{dt} = f(x)
\]
\[
x = x^0 + y
\]
\[
\frac{dy}{dt} = f(x^0 + y)
\]

\[
f(x^0 + y) = f(x^0) + \frac{df}{dx}(x^0)y + \text{h.o.t.}
\]

\[
\frac{dy}{dt} = Ay \quad y = 0 \quad \text{the equilibrium point}
\]

\[
A = \frac{df}{dx}(x^0)
\]

Theorem 1
If all the eigenvalues of the matrix \(A \) have negative real parts, then the origin is asymptotically stable. If at least one eigenvalue has a positive real part, the origin is unstable.

Example 1

\[
\frac{dx}{dt} = f(x)
\]

\[
C \frac{dv_c}{dt} = I_s - f(v_c)
\]

\[
\frac{dv_c}{dt} = -\frac{1}{C} \left(f(v_c) - I_s \right)
\]

\[
\frac{dv_c}{dt} = -\frac{1}{C} i_t
\]

1. \(I_s = 0 \), \(v^0 = 0 \), \(\frac{dv_c}{dt} = -f(v_c) \)
\[A = -\frac{1}{C} \left. \frac{df}{dv_c} \right|_{v_c = 0} < 0 \]

2.

\[I_s = I_1 \]

\[A_b = -\frac{1}{C} \left. \frac{df}{dv_c} \right|_{v_c = b} < 0 \]

\[A_a = -\frac{1}{C} \left. \frac{df}{dv_c} \right|_{v_c = a} = 0 \]

\[v_c = a + \Delta \]

\[\Delta > 0 : \quad i_1 > 0 \]

\[\frac{dv_c}{dt} < 0 \]

\[\Delta < 0 : \quad i_1 > 0 \]

\[\frac{dv_c}{dt} < 0 \]

\[v_c = a \quad \text{unstable} \]

3.

\[I_s \]

\[I_1 < I_s < I_2 \]

\[A_a < 0 \]

\[A_b > 0 \]

\[A_e < 0 \]

The direct method of Lyapunov: local stability

Definition 1

Consider a function \(V(x) = V(x_1, ..., x_n) \), defined in some neighborhood \(R \) of the origin. If

(i) \(V(x) \) is continuously differentiable in \(R \),

(ii) \(V(0) = 0 \),
(iii) \(V(x) > 0, \ x \neq 0, x \in R, \)
then \(V(x) \) is said to be positive definite in \(R \)

Definition 2
A function \(V(t, x) \), defined in some neighborhood \(R \) of the origin is positive define in \(R \) if

(i) \(V(t, x) \) has continuous derivatives in \(R \) for \(t \geq 0 \),

(ii) \(V(t, 0) = 0, t \geq 0 \)

(iii) there exists a scalar function \(W(x) \), positive definite, such that

\[
W(x) \leq V(t, x), \ x \in R, \ t \geq 0
\]

Example
\((2x_1^2 + 3x_2^2)e^{-t} \) is positive for all \(x \neq 0 \) and for each fixed \(t \), but does not fit the definition of a positive definite function

Definition 3
Consider a neighborhood \(R \) of the origin and a function \(V(t, x) \), positive definite in \(R \). \(V(t, x) \) is said to be a Lyapunov function for an equation \(\frac{dx}{dt} = f(t, x) \) if

\[
\frac{dV}{dt} \leq 0 \quad \text{for all } x \in R \text{ and } t \geq 0
\]

where

\[
\frac{dV}{dt} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} \frac{dx}{dt} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x)
\]

Theorem
If there exists a neighborhood \(R \) of the origin over which a Lyapunov function can be defined, then the origin is stable

Example

![Fig. 6](image-url)
\[
\frac{dv_c}{dt} = -3v_c + i_L
\]
\[
\frac{di_L}{dt} = -\frac{v_c}{2} - \frac{1}{2}i_L
\]

\[-3v_c + i_L = 0\]

\[-\frac{v_c}{2} - \frac{1}{2}i_L = 0\]

\[v_c^{(0)} = 0, \quad i_L^{(0)} = 0\]

\[x = \begin{bmatrix} v_c \\ i_L \end{bmatrix}, \quad V(x) = \frac{1}{2}Cv_c^2 + \frac{1}{2}Li_L^2 = \frac{1}{2}v_c^2 + \frac{1}{2}i_L^2\]

\[
\frac{dv}{dt} = \frac{dV}{dx} \frac{dx}{dt} = [v_c, i_L] \begin{bmatrix} \frac{dv_c}{dt} \\ \frac{di_L}{dt} \end{bmatrix} = [v_c, i_L] \begin{bmatrix} -3v_c + i_L \\ -\frac{v_c}{2} - \frac{1}{2}i_L \end{bmatrix} = -\left(3v_c^2 + \frac{1}{2}i_L^2\right)
\]

\[\forall \ x \neq 0: \frac{dV}{dt} < 0 \quad v_c^{(0)} = 0, \quad i_L^{(0)} = 0 \quad \text{is stable}\]