
 
 
 
 
 
 

10. The Discrete-Time Fourier 
  Transform (DTFT) 
 
 
 
 
10.1. Definition of the discrete-time Fourier transform 
 
 The Fourier representation of signals plays an important role in both 
continuous and discrete signal processing. In this section we consider discrete 
signals and develop a Fourier transform for these signals called the discrete-time 
Fourier transform, abbreviated DTFT. 
 The discrete-time Fourier transform of a discrete sequence ( )mx  is defined as 
follows: 
 

   (10.1) ( ) ( )∑
∞

−∞=

ω−ω =
m

~m~
mxeX jj e

 
where ω~  is called the normalized frequency. 
The notation ( )ω~X je  is justified by the observation that the frequency 
dependency is in exponential form. 
In order for the DTFT of a sequence to exist, the summation in (10.1) must 
converge. It will hold if  is absolutely summable, that is ( )mx
 

  ( ) ∞<∑
∞

−∞=m

mx . (10.2) 

 
Note that the DTFT of a discrete-time sequence is a function of a continuous 
variable ω~ . 
 
 
 



 222

Since 
 

   

( )( ) ( ) ( ) ( )

( ) ( )ω
∞

−∞=

ω−

∞

−∞=

π−ω−
∞

−∞=

π+ω−π+ω

∑

∑∑

==

===

~

m

~m

m

m~m

m

~m~

Xmx

mxmxX

jj

2jj2j2j

ee

eeee

 
then the DTFT is periodic in ω~  with a period of π2 . 
 Since ( )ω~jeX  is periodic in ω~  with the period equal to π2 , we can express it 
by an exponential Fourier series in variable ω~ . Therefore 
 

   (10.3) ( ) ω−
∞

−∞=
−

ω
∞

−∞=

ω ∑∑ ==
~m

m
m

~m

m
m

~
c~c~X jjj eee

 
where 
 

  ( ) ω
π

= ω
π

π−

ω
− ∫ ~Xc~

~m~
m dee

2
1 jj . (10.4) 

 
Comparison of equations (10.1) and (10.3) shows that the discrete signal ( )mx  

corresponding to the spectrum ( )ω~X je  is ( ) mc~mx −= . Therefore, from equation 
(10.4) the inverse discrete-time Fourier transform is 
 

  ( ) ( )∫
π

π−

ωω ω
π

= ~Xmx
~m~
dee

2
1 jj . (10.5) 

 
 To shed more light on the subject we will derive the DTFT using an 
alternative approach. 
 Let us consider the Fourier transform of a continuous-time signal  ( )tx
 

  . ( ) ( ) ttxX t dej jω−
∞

∞−
∫=ω

 
We approximate the integral as follows: 
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   (10.6) ( ) ( ) s
mT

m
s TmTxX sω−
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∑≅ω jej

 
and replace the product  by the normalized frequency sTω
 

  
s

s f
T~ ω

=ω=ω . 

 
If we ignore the scale factor  and replace sT ( )smTx  by ( )mx , the resulting 
summation, denoted by ( )ω~X je , is the DTFT 
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Example 10.1 
 
Let us consider the signal 
 

  ( ) ( ) 1<= amuamx m . 
 
The DTFT of this signal is 
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Since the expression on the right hand side is the geometric series, we obtain 
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provided 1<a . 
 
Example 10.2 
 
Let ( )mx  be the unit sample ( )mδ . The DTFT of this signal is 
 

  . ( ) ( ) 1ee jj =δ= ∑
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m~~
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10.2. Some properties of the DTFT 
 
 In this section we formulate some properties of the discrete time Fourier 
transform. 
 
Periodicity 
 
This property has already been considered and it can be written as follows 
 
  ( )( ) ( )ωπ+ω =

~~
XX j2j ee . (10.8) 

 
Linearity 
 
The DTFT is a linear operator, i.e. the discrete-time Fourier transform of a signal 
 
  ( ) ( ) ( )mxamxamx 2211 +=  
 
is 
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j
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where ( )ω~kX je  is the DTFT of ( ) ( )21,kmxk = . 
 
Shifting 
 
Let us consider a shifted signal 
 
  ( ) ( )0mmxmx̂ −= . 
 
The DTFT of this signal is (see (10.7)) 
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Let , then 0mmk −=
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Thus, we conclude that shifting in time results in the multiplication of the DTFT 
by a complex exponential ω− ~m0je . 
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Example 10.3 
 
 Let us consider the shifted unit sample ( ) ( )0mmmx −δ= . Using the shifting 
property and knowing that the DTFT of ( )mδ  is 1, we obtain 
 
  ( ) ω−ω =

~m~
X 0jj ee . 

 
Frequency shifting 
 
Let us consider a signal ( )mx  multiplied by  0je ωm

 
  ( ) ( ) 0je ω= mmxmx̂ . 
 
The DTFT of this signal is 
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Thus, multiplying a sequence by a complex exponential  results in shifting 
in frequency of the DTFT. 

0je ωm

 
Convolution theorem 
 
The convolution of signals ( )mx  and ( )my  is given by 
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The DTFT of the convolution is 
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where kmp −= . Thus, the DTFT of a convolution of signals ( )mx  and ( )my  is 
the product of the DTFTs of ( )mx  and ( )my . 
 
Parseval’s theorem 
 
Let us consider a discrete signal ( )mx . Parseval’s theorem states that 
 

  ( ) ( )∫∑
π

π−

ω
∞

−∞=

ω
π

= ~Xmx
~j

m

de
2
1 22 . (10.9) 

 
In Section 12 it will be shown that this equation gives signal energy in the time 
domain and in the frequency domain. 
 
 
10.3. Comparing of the DTFT to the DFT 
 
 Recall that the DFT of a sequence ( ){ }mxxm =  where 110 −= N,,,m  is 
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On the other hand, the DTFT of the same sequence is 
 

  . (10.11) ( ) ∑
−

=

ω−ω =
1

0

jj ee
N

m

~m
m

~
xX

 
Comparing (10.10) to (10.11) we find 
 
  ( ) 110e 2

j −== π
=ω

ω N,,,nXX
N

n~
~

n . (10.12) 

 
Equation (10.12) states that the coefficients of the DFT are samples of the 

continuous spectrum given by the DTFT at n
N

~ π
=ω

2
. 

Note that the DFT coefficients correspond to N samples of the ( )zX  taken at N 
equally spaced points around the unit circle 
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  110e
2j
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10.4. Generalized DTFT 
 
 Some discrete-time signals do not have a DTFT but they have a generalized 
DTFT as explained below. 
 Let the DTFT of a signal ( )mx  be ( ) ( )ωδ=ω ~X

~je . To find this signal, we use 
the inverse DTFT: 
 

  ( ) ( )∫
π

π−

ω

π
=ωωδ

π
=

2
1de

2
1 j ~~mx

~m . 

 

This result states that the constant signal ( )
π

=
2
1mx  has the DTFT equal to ( )ωδ ~ . 

Hence, the constant signal ( ) 1=mx  has the DTFT equal to ( )ωπδ ~2 , or 
 
  ( ) ( ) ( )ωπδ=↔= ω ~Xmx

~
2e1 j . (10.13) 

 
Note that the signal  does not have the DTFT in the ordinary sense 
because the series 

( ) 1=mx

 

   ∑
∞

−∞=

ω−

m

~mje

 
is not convergent. Therefore we say that ( )ωπδ ~2  is a generalized DTFT of the 
signal . ( ) 1=mx
 Now we consider a discrete signal ( )mx  having the DTFT 
( ) ( 0

je ω+ωδ=ω )~X
~

. Then 
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0 e
2
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or 
 

  ( ) ( ) ( )0
jj 2ee 0 ω+ωπδ=↔= ωω− ~Xmx
~m  (10.14) 

 
holds. 
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Likewise, we find 
 
  ( ) ( ) ( )0

jj 2ee 0 ω−ωπδ=↔= ωω ~Xmx
~m . (10.15) 

 
Since 
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then using (10.14) and (10.15) we determine the DTFT of the signal 

 as follows: ( ) ( )α+ω= mmx 0cos
 

  
( ) ( ) ( )

( ))(e)(e

2e
2
12e

2
1e

0
j

0
j

0
j

0
jj

ω+ωδ+ω−ωδπ=

=ω+ωπδ+ω−ωπδ=

α−α

α−αω

~~

~~X
~
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A similar approach leads to the DTFT of the signal ( ) ( )α+ω= mmx 0sin  
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To determine the DTFT of ( )mx , we apply (10.14) and (10.15)  
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In the special case when  we have: 0=α
 
  ( ) ( ) ( ))()(ecos 00

j
0 ω+ωδ+ω−ωδπ=↔ω= ω ~~Xmmx

~
 (10.18) 

 
  ( ) ( ) ( ))()(jesin 00

j
0 ω−ωδ−ω+ωδπ=↔ω= ω ~~Xmmx

~
. (10.19) 

 
 
10.5. Frequency response of LTI discrete systems 
 
 Let an LTI discrete system be represented by its unit sample response ( )mh  
(see Fig.10.1). The response of the system due to the input ( )mx  is given by 
convolution 
 

  . ( ) ( ) ( ) ( ) ( )∑
∞

−∞=

−=∗=
k

kmxkhmxmhmy
 

y(m)x(m)
h(m)

  Fig.10.1. An LTI discrete system 
 
Convolution theorem states that 
 
  ( ) ( ) ( )ωωω =

~~~
XHY jjj eee  (10.20) 

 
 
where ( )ω~Y je  is the DTFT of the output ( )my , ( )ω~X je  is the DTFT of the input 
( )mx  and ( )ω~H je  is called the frequency response function of the discrete 

system. 
Note that ( )ω~H je  is, in general, a complex-valued function of the frequency ω~  
and can be written in the polar representation 
 
  ( ) ( ) ( )ωφωω =

~
H
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HH

jejjj eee . (10.21) 
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Thus, the frequency response function of the discrete system is the DTFT of the 
unit sample response ( )mh  and is a continuous function of ω~ . Having the 

magnitude ( )ω~H je  and the phase ( )ωφ
~

H
je  we find: 
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~~~
XHY jjj eee  (10.22) 

 
  ( ) ( ) ( )ωωω φ+φ=φ
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X

~
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~
Y

jjj eee . (10.23) 
 
Example 10.4 
 
Let us consider the input signal 
 
  ( ) ( )α+ω= mAmx 0cos  
 
To find the output response of a system specified by a frequency response 
function ( )ω~H je , we apply (10.20). The DTFT of the signal ( )mx  is given by 
(10.16) repeated below 
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To find ( )my , we use the inverse DTFT 
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